
A System for Acquiring, Processing, and Rendering Panoramic Light
Field Stills for Virtual Reality

RYAN S. OVERBECK, Google Inc.
DANIEL ERICKSON, Google Inc.
DANIEL EVANGELAKOS, Google Inc.
MATT PHARR, Google Inc.
PAUL DEBEVEC, Google Inc.

(a)

(c)

(b)

(d)

(e) (f) (g)

(h) (i) (j)

Fig. 1. Acquiring and rendering panoramic light field still images. (a,c) Our two rotating light field camera rigs: the 16×GoPro rotating array of action sports
cameras (a), and a multi-rotation 2×DSLR system with two mirrorless digital cameras (c). (b,d) Long exposure photographs of the rigs operating with LED
traces indicating the positions of the photographs. (e-j) Novel views of several scenes rendered by our light field renderer. The scenes are: (e) Living Room, (f)
Gamble House, (g) Discovery Exterior, (h) Cheri & Gonzalo, (i) Discovery Flight Deck, and (j) St. Stephens.

We present a system for acquiring, processing, and rendering panoramic
light field still photography for display in Virtual Reality (VR). We acquire
spherical light field datasets with two novel light field camera rigs designed
for portable and efficient light field acquisition. We introduce a novel real-
time light field reconstruction algorithm that uses a per-view geometry and
a disk-based blending field. We also demonstrate how to use a light field
prefiltering operation to project from a high-quality offline reconstruction
model into our real-time model while suppressing artifacts. We introduce a
practical approach for compressing light fields by modifying the VP9 video
codec to provide high quality compression with real-time, random access
decompression.

We combine these components into a complete light field system offering
convenient acquisition, compact file size, and high-quality rendering while

Authors’ addresses: Ryan S. Overbeck, Google Inc. Daniel Erickson, Google Inc. Daniel
Evangelakos, Google Inc. Matt Pharr, Google Inc. Paul Debevec, Google Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/11-ART197 $15.00
https://doi.org/10.1145/3272127.3275031

generating stereo views at 90Hz on commodity VR hardware. Using our
system, we built a freely available light field experience application called
Welcome to Light Fields featuring a library of panoramic light field stills for
consumer VR which has been downloaded over 15,000 times.

CCS Concepts: • Computing methodologies → Image-based render-
ing; Rendering; Image compression;

Additional Key Words and Phrases: Light Fields, Virtual Reality, 6DOF

ACM Reference Format:
Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul
Debevec. 2018. A System for Acquiring, Processing, and Rendering Panoramic
Light Field Stills for Virtual Reality. ACM Trans. Graph. 37, 6, Article 197
(November 2018), 15 pages. https://doi.org/10.1145/3272127.3275031

1 INTRODUCTION
The advent of consumer VR headsets such as HTC Vive, Oculus Rift,
and Windows Mixed Reality has delivered high-quality VR tech-
nology to millions of new users. Notably, these headsets support
positional tracking, which allows VR experiences to adjust the per-
spective shown by the headset according to how the usermoves their
head, creating experiences which are more immersive, more natural,
and more comfortable. To date, however, most photographically-
acquired content such as 360 Video and Omnidirectional Stereo

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:2 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

video can only be displayed from a fixed position in space and thus
fails to benefit from positional tracking.
Panoramic light fields provide a solution for acquiring and dis-

playing real-world scenes in VR in a way that a user can not only
look in every direction, but can move their head around in the scene
as well. As a result, the user receives a more comfortable and im-
mersive experience, and even gets a better sense of the materials
within the scene by observing properly reproduced view-dependent
surface reflections.
Light Fields also offer benefits over traditionally-modeled 3D

scenes, which typically require extensive effort for artists to build
detailed models, author complex surface shaders, and compose and
simulate complex lighting. Rendering times for modern global illu-
mination algorithms take hours per frame, as render farms perform
trillions of ray queries, texture lookups, and shader evaluations. For
scenes available to be photographed, light fields vastly reduce this
effort, achieving photorealism by simply interpolating and extrap-
olating pixel data from images which are already photorealistic.
Moreover, their simplicity suggests rendering solutions that can be
measured in milliseconds, independent of scene complexity, achiev-
ing the rates needed for compelling virtual reality.
Although light fields provide many benefits, they have yet to

appear in many commercial applications despite being introduced
to computer graphics over 20 years ago [Gortler et al. 1996; Levoy
and Hanrahan 1996]. We believe there are four primary reasons for
this:

(1) Use-case: A compelling product use-case must exist in or-
der for both content creators and distribution platforms to
support the production of light field imagery.

(2) Acquisition complexity: Creating high quality light fields re-
quires acquiring thousands of images from a dense set of
viewpoints. A light field camera must capture all of these im-
ages in a reasonable amount of time, while also being portable
and reliable.

(3) Size: Light fields comprising thousands of images are unrea-
sonably cumbersome for storage and transmission in uncom-
pressed form.

(4) Quality: In order to maintain immersion, light field rendering
must be free of distracting artifacts.

Speaking to (1), the advent of high-quality consumer VR tech-
nology with positional head tracking provides us with a new and
compelling opportunity for viewing light fields, able to stimulate
and satisfy our important sense of motion parallax. Moving one’s
head in a scene not only reveals its depth in a compelling way, but
it reveals information about the materials and lighting in a scene as
we watch reflections shift over and play off of the scene’s surfaces.
In this way, light fields are an ideal photo and video format for VR,
as an HMD allows one to step inside of a lightfield photo or video
and be teleported to far away and exotic places. To maximize the
feeling of presence, our work focuses on panoramic light field still
images.
The medium of VR presents another challenge:

(5) Speed: True immersion in VR requires rendering at exceed-
ingly high framerates. While 30Hz or 60Hz may have been

enough for traditional real-time applications, current desk-
top VR platforms require applications to render at 90Hz to
maximize user comfort.

Our system overcomes the technical challenges (2)-(5) above with
several novel advances in light field acquisition, processing, and
rendering. We acquire our light fields with one of our two novel
light field camera rigs (see Figure 1(a,c)). These rigs capture thou-
sands of images on the surface of the sphere (see Figure 1(b,d)) and
were designed with efficiency and portability in mind. We then feed
the images into our cloud-based processing pipeline. The pipeline
calibrates the images to determine the real-world locations of the
cameras and extracts depth maps to be used by our renderer. Also
during processing, we perform a novel application of light field
prefiltering that improves final reconstruction quality by smoothing
away distracting ghosting artifacts. The pipeline finishes by com-
pressing the data using a practical codec for light field stills. Based
on VP9 [Mukherjee et al. 2013], a mainstream open source video
codec, our codec achieves light field compression rates competitive
with video while also retaining real-time random access to individ-
ual image tiles. We render these compressed light fields using our
novel real-time light field reconstruction algorithm. This algorithm
uses a per-view geometry to perform depth correction and blends
the multiple views using a disk-based blending field. We achieve
high quality real-time rendering (see Figure 1(c-j)) with relatively
sparse light field data sets.
The result is a complete system for acquiring, processing, and

rendering lightfield still imagery that produces high quality recon-
structed views and runs at 90Hz on entry-level VR-enabledmachines.
Moreover, the datasets compress down to 50-200MB with few no-
ticeable compression artifacts, so that a user can download a light
field still in a matter of seconds on a common 10-20 Mbit/s internet
connection. We have launched this system to the public asWelcome
to Light Fields, a freely downloadable application on the Steam®
store (https://store.steampowered.com/). Welcome to Light Fields
allows people to virtually explore places, including the scenes in
this paper, in a deeply immersive way.

After a review of related work in Section 2, the rest of this paper
focuses on these primary contributions:

• two novel light field acquisition devices that can acquire dense
panoramic light field stills and are portable and efficient (Sec-
tion 3),

• a novel real-time light field reconstruction algorithm that
produces higher quality results with sparser light field images
than previous real-time approaches (Section 4),

• a novel application of light field prefiltering to reduce many
light field rendering artifacts (Section 5),

• a practical light field codec implemented using VP9 that pro-
vides aggressive compression while also retaining real-time
random access to individual image tiles (Section 6), and

• taken altogether, a system that provides a complete solution
to acquiring, processing, and rendering panoramic light field
stills for VR (Section 7).

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:3

2 RELATED WORK
There has been significant research on light fields which is well
covered by surveys [Wu et al. 2017; Zhang and Chen 2004]. In this
section, we focus on the works that are most relevant to understand-
ing our system.

Panoramic light fields for VR. A few recent projects [Debevec
et al. 2015; Milliron et al. 2017] have pointed toward the power of
panoramic light fields in VR. Our application goals are similar, but
in this work we aim to document a complete system for light field
still acquisition, processing, compression, and rendering which can
produce downloadable experiences on even entry-level consumer
VR hardware.

There are several other image based rendering (IBR) approaches
that aim for a simpler representation than light fields by reducing
the dimensionality of the data, but in doing so restrict the space of
the viewer’s motion. Omnidirectional stereo [Anderson et al. 2016;
Konrad et al. 2017] provides stereo views for all directions from a
single view point. Concentric mosaics [Shum and He 1999] allow
movement within a circle on 2D plane. Our panoramic light fields
provide the full 6 degrees of freedom (6DOF) of movement (3 for
rotation and 3 for translation) in a limited viewing volume. This
leads to a more comfortable and fully immersive viewing experience
in VR.

Light fields have also proven useful to render effects of refocus [Ng
et al. 2005] and visual accomodation [Lanman and Luebke 2013].
Birklbauer and Bimber [2014] extended this work to panoramic light
fields. However, these approaches require extremely dense image
sets acquired using microlens arrays, and allow viewpoint changes
of only a few millimeters. We record larger volume light fields for
stereoscopic 6DOF VR by moving traditional cameras to different
positions as in Levoy and Hanrahan [1996], and we use depth-based
view interpolation to overcome the resulting aliasing of the light
field from the greater viewpoint spacing. As future work, it could
be of interest to display such datasets on neareye light field displays
to render effects of visual accommodation.
We render our high quality panoramic light fields with a novel

disk-based light field reconstruction basis in Section 4. Similar to
the work of Davis et al. [2012] and Buehler et al. [2001], our basis
supports loosely unstructured light fields: we expect the light field
images to lie on a 2D manifold and achieve best performance when
the images are evenly distributed. We use a disk-based basis in order
to render with a per-view geometry for high quality reconstruction.
Davis et al. [2012] proposed a disk-based method specifically for
wide-aperture rendering, but their approach doesn’t immediately
allow rendering with per-view geometry as ours does. Our approach
also allows wide-aperture rendering while offering more flexibility
in aperture shape.
Our system leverages depth-based view interpolation to render

rays of light field, even when the rays do not pass through the orig-
inal camera centers. There are offline view interpolation algorithms
that can achieve high quality rendering of light field data [Penner
and Zhang 2017; Shi et al. 2014; Zitnick et al. 2004]. Of particular
interest are recent efforts to use machine learning e.g. [Kalantari
et al. 2016]. Although these approaches are currently limited to

offline usage, we expect them to become more relevant to real-time
applications such as ours in the near future.

Light field acquisition. Most light fields have been acquired with
motorized camera gantries (e.g. [Levoy and Hanrahan 1996]), hand-
held cameras (e.g. [Birklbauer and Bimber 2015; Davis et al. 2012;
Gortler et al. 1996]), or imaging through lenslet arrays ([Ng et al.
2005]). Lenslet arrays typically capture too small a viewing volume
for VR, and motorized gantries are usually slow or optimized for pla-
nar or inward-pointing data. In our work, we present two mechan-
ical gantry camera rigs which capture outward-looking spherical
light field datasets in a matter of minutes or as little as 30 seconds,
with greater repeatability than hand-held solutions.

Geometry for improved light field reconstruction. It has been demon-
strated that image-based rendering (IBR) techniques, including light
fields, can be improved by projecting sources images onto a geomet-
ric model of the scene [Chai et al. 2000; Lin and Shum 2004]. Most
previous work uses a single global scene model [Buehler et al. 2001;
Chen et al. 2002; Davis et al. 2012; Debevec et al. 1998; Gortler et al.
1996; Levoy and Hanrahan 1996; Shade et al. 1998; Sloan et al. 1997;
Wood et al. 2000]. More recently, it has been shown that using multi-
view or per-view geometries can provide better results [Hedman
et al. 2016; Penner and Zhang 2017; Zitnick et al. 2004] by optimizing
each geometry to best reconstruct a local set of views. However,
most of these approaches target offline view synthesis [Penner and
Zhang 2017; Zitnick et al. 2004]. There are several real-time ap-
proaches that target free-viewpoint IBR by using multi-view or
per-view geometries [Chaurasia et al. 2013; Eisemann et al. 2008;
Hedman et al. 2016]. Relative to their work, we focus on denser light
field datasets, sacrificing some range of motion in order to more
faithfully reproduce reflections and other view-dependant effects
when viewed from within the light field volume.

Light field compression. Viola et al. [2017] provide a thorough
review of many approaches to light field compression. Most ap-
proaches, including ours, build on the insight that the disparity
between images in a light field is analogous to the motion between
neighboring frames in a video [Lukacs 1986], and so similar encod-
ing tools may be used. Most previous approaches require the full
light field to be decoded before any of it can be rendered. However,
for immersive stereoscopic viewing in VR, a relatively small por-
tion of the light field is visible at any time. Based on this insight,
we decided to focus on compression techniques that allow for ran-
dom access to light field tiles and on-demand decoding [Levoy and
Hanrahan 1996; Magnor and Girod 2000; Zhang and Li 2000].
The basis of our compression algorithm, as described in Subsec-

tion 6.1, is similar to the work of Zhang and Li [2000]. The primary
impact of our work lies in implementing this approach in an existing
video codec, VP9 [Mukherjee et al. 2013], and demonstrating its use
in a high quality light field rendering algorithm.

3 ACQUISITION
We built two camera rig systems designed to record the rays of light
incident upon a spherical light field volume.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:4 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

16×GoPro rig. Our first rig, prioritizing speed, is built from a mod-
ified GoPro Odyssey omnidirectional stereo (ODS) rig [Anderson
et al. 2016] to create a vertical arc of 16 GoPro Hero4 cameras (Fig-
ure 1(a)). The camera arc is placed on a rotating platform which
has a custom-programmed PIC board to drive a stepper motor to
spin the array in a full circle in either 30, 60, or 120 seconds. For the
longer settings, the rig can support both continuous rotation, or a
"start-stop" mode which brings the motion of the arc to a halt at
72 positions around the circle. The fastest 30 second rotation time
is well suited for brightly lit conditions when motion blur is not a
problem, and for capturing people. The slower rotation times and
start-stop mode were used to avoid motion blur when the cameras
were likely to choose long exposure times.

By extracting evenly-spaced video frames from the 16 video files
(2704 × 2028 pixels, 30fps), we obtain a dataset of 16 rows of 72
pictures around, or 6 Gigapixels. (We drop some of the clumped-
together images near the poles to even out the distribution.) For
closer subjects, we can double the number of rows to 32 by rotating
the camera array twice. In this mode, the top of the camera arc is
attached to a string wound around a vertical rod, and the unwinding
of the string allows the arm to pivot down along its arc by half the
camera spacing each rotation (Figure 1(b)).

2×DSLR rig. Our second rig, prioritizing image quality, spins a
pivoting platform with two Sony a6500 mirrorless cameras (Fig-
ure 1(c)). Their 8mm Rokinon fisheye lenses point outward from
opposite sides of an 80cm long platform, and one side is additionally
weighted. A similar drop-string mechanism as before allows the
cameras to pivot lower/higher approx. 3cm each time the platform
rotates, sending one camera in an upward spherical spiral and the
other downward (Figure 1(d)). The control board triggers the cam-
eras to take a photo 72 times each rotation, producing spherical
photo sets with 18 rows and 72 columns. The drop-string allows the
cameras to cover the whole sphere of incident viewing directions
with a single motor mechanism, reducing the cost and complexity
of the system.

The mirrorless cameras support "silent shooting" with electronic
(rather than physical) shuttering. This allows fast shooting of brack-
eted exposures for high dynamic range imaging. When the rig is
run in start-stop mode, HDR images of -2, 0, and +2 stops can be
recorded at 1.5 seconds between positions, yielding 7,776 photos to-
tal in 33minutes. The rig can also be run continuously, yielding 2,592
single-shot photos in nine minutes. When running continuously,
the shutter speed on each camera must be set to 1/250th second
exposure or less in order to produce sufficiently sharp1 images at
the fastest rotation setting of 30 seconds.

The diameter of the capture volumewas chosen to provide enough
room for acceptable seated head movement while keeping the rigs
relatively light and maneuverable. The GoPro-based rig sweeps
the camera centers along the surface of a sphere 70cm in diameter,
which, given the GoPro’s 110◦ horizontal field of view, yields a
light field viewing volume 60cm in diameter, and slightly smaller
in height (the mirrorless camera rig’s volume is slightly greater
at 70cm). We found that this was a sufficient volume to provide

11/250th sec shutter rotating at 2 rpm turns the cameras 1/7500th of a rotation during
exposure, allowing light fields of 7500/360 ≈ 20 pixels per degree at the equator.

(a) (b)

(c) (d)

Fig. 2. We use a disk-based blending field for light field reconstruction. (a)
The disks are positioned on the capture surface. (b) To generate a novel view,
the disks are projected onto the novel view’s image providing windows onto
each light field image. (c) The disks are sized large enough to overlap into a
seamless view of the scene (d).

satisfying parallax for a seated VR experience, and it also allowed us
to fit the rig into tighter spaces, such as the flight deck and airlock
of the space shuttle.

4 LIGHT FIELD RECONSTRUCTION WITH DISK-BASED
BLENDING FIELD AND PER-VIEW GEOMETRY

To render our light fields, we project the images onto a per-view
geometry and blend the results using a disk-based reconstruction
basis as seen in Figure 2. Each light field image is represented by a
disk (Figure 2(a)), and each disk acts as a window onto the image
(Figure 2(b)). The size of the disks determines the amount of blending
between neighboring views, and we choose large enough disks to
blend together a seamless view of the light field (Figure 2(c, d)).
Figure 3 illustrates how the contents of each disk are rendered

using a per-view geometry proxy. Each light field image is projec-
tion mapped onto a distinct triangle mesh derived from a multi-
view stereo depth map. The resulting textured mesh is masked and
weighted by the disk and projected onto the screen for the novel
view. These separate textured meshes are blended together as in
Figure 2.
As highlighted in Section 4.3, the primary benefit of our disk-

based representation is that it makes it efficient to render the view
from each light field image as a separate textured triangle mesh
and blend the views together all on the GPU. Rendering with these
per-image geometry proxies allows for better reconstruction than
using a single global geometry proxy.
In the following subsections, we describe the details of our al-

gorithm. We start with a higher level mathematical description in

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:5

Novel View
Image Disk

Light Field
Image

Triangle Mesh

(x,y) (u ,v)i i

(s ,t)i i

o

e

Fig. 3. To compute Ii (si , ti) in Equation 2, each light field image is projec-
tion mapped onto a mesh which is masked and weighted by the disk and
projected onto the image for the novel view.

Subsection 4.1 before describing the GPU implementation in Subsec-
tion 4.2. We emphasize how our approach improves upon traditional
cameramesh based light field rendering used bymost previousmeth-
ods in Subsection 4.3. Finally, we detail how we generate the size
and shapes of the disks in Subsection 4.4 and the meshes for each
image in Subsection 4.5.

4.1 Rendering with Disks
Figure 3 illustrates our disk-based rendering algorithm. We compute
the image for a novel view of the light field, Φ(x ,y), by performing
ray look ups into the light field data:

Φ(x ,y) = L(o, e). (1)

L(o, e) is a light field ray query with ray origin o and direction e.
In the context of Equation 1, o is the center of projection for the
novel image, and e is the vector from o through the pixel at (x ,y)
(see Figure 3). Although light fields are generally parameterized as
four-dimensional, it is more convenient for our purposes to use this
6D ray query.
We use a disk-based representation to answer this ray query:

L(o, e) =
∑
i Ii (si , ti)ρi (ui ,vi)∑

i ρi (ui ,vi)
, (2)

where Ii draws a continuous sample from the light field image i ,
and ρi maps a position on the disk to a weight. (si , ti) and (ui ,vi)
are both functions of the ray, (o, e), and, as shown in Figure 3, they
are at the intersection point between the ray and the triangle mesh
and between the ray and the disk respectively. (si , ti) are in the
local coordinates of the light field image, and (ui ,vi) are in the local
coordinates of the disk.

ρi maps a position on the disk, (ui ,vi), to a weight in a kernel.
The kernel can be any commonly used reconstruction kernel that
is at its maximum at the center of the disk and goes to zero at the
edge. We use a simple linear falloff from 1 at the disk center, but it
is also possible to use a Gaussian, spline, Lanczos, or other kernel.
Each disk at i is centered at the center of projection of each image
at i and oriented tangential to the spherical light field surface (see
Figure 2(a)). The size and shape of each disk is computed to achieve
an appropriate amount of overlap between neighboring disks.

Note that Equation 2 derives from the formula for point splat-
ting [Gross and Pfister 2011; Zwicker et al. 2001]:

Φ(x ,y) =

∑
i ciρi (ui ,vi)∑
i ρi (ui ,vi)

, (3)

where instead of using the constant splat color, ci , in Equation 3,
we sample the light field image, Ii (si , ti), in Equation 2.

4.2 GPU Implementation
Equation 2 is implemented as a 2-pass algorithm in OpenGL. In the
first pass, the numerator is accumulated in the RGB components of
an accumulation framebuffer while the denominator is accumulated
in the alpha component. In the second pass, we perform the division
by rendering the accumulation framebuffer as a screen aligned quad
and dividing the RGB components by the alpha component. Most
of the work is done in the first pass, so we focus on that in the
following.
In the first pass, we render texture mapped triangle meshes in

order to compute Ii (si , ti) in Equation 2. The triangle meshes are
sent to the GPU via the OpenGL vertex stream, and the vertices
are expanded, transformed, and rendered in the shader program.
The light field image data is sampled from a texture cache, which is
described below in Subsection 4.2.1. The texture coordinates at the
vertices are passed along with the vertex stream.

The disk blending function, ρi (ui ,vi), is also computed in the
first pass shader program. We compute the intersection between the
ray through the fragment at (x ,y) and the disk for image i , and then
sample the kernel at the intersection point. The disk parameters
are stored in a shader storage buffer object (SSBO), which is loaded
during program initialization before rendering.

After the shader program finishes with a fragment, the results are
accumulated to the framebuffer to compute the sums in Equation 2.
The sums are accumulated in a 16-bit floating point RGBA frame-
buffer using simple additive blending. The accumulation framebuffer
is passed as a texture to the second pass which performs the division
as explained at the beginning of this subsection.

4.2.1 Tile Streaming and Caching. If implemented naïvely, the
algorithm as described above will render all of every textured mesh
for all light field images every frame, requiring the entire light
field to be loaded into GPU memory. This would be prohibitively
expensive for our typical light field resolution. To avoid this, we
use a tile streaming and caching architecture similar to that used in
previous work [Birklbauer et al. 2013; Zhang and Li 2000].
First, during processing, we divide the light field images into

smaller tiles. We generally use 64×64 tiles, but different tile sizes
offer trade-offs between various computational costs in the system.
Both the light field imagery and the triangle meshes are divided
into tiles.
At render time, we perform CPU-based culling to remove any

tiles that aren’t visible through their disks. For each visible tile, we
load the image tile into a GPU tile cache if it’s not already there, and
we append the tile’s mesh to the vertex array that is streamed to
the GPU shader program described above in Subsection 4.2. The tile
cache is implemented in OpenGL as an array texture, where each
layer in the array is treated as a cache page. We generally use a page

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:6 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

(a) (b) (c)

Fig. 4. We use depth testing to mask out intra-image occlusions within each
mesh and blend the results (a). We found this to work better than turning off
depth testing altogether (b), which results in artifacts where the background
bleeds into the foreground, and depth testing between neighboring meshes
(c), which causes stretched triangles at the edges to obstruct the view. These
close-ups are from the Discovery Flight Deck.

size of 512×512 or 1024×1024 and concatenate tiles into those pages
as needed. The pages are evicted according to a simple FIFO scheme.
The address of the tile in the cache is streamed along with the mesh
vertex data so that it can be used to fetch texture samples from the
cache in the fragment shader.

Note that this tile streaming architecture has strong implications
on how we compress the light field imagery, and we explain how
we compress the light field while allowing for this per-tile random
access in Section 6.

4.2.2 Rendering with Intra-Image Occlusion Testing. Each mesh
is rendered using the GPU’s depth test to mask out intra-image
occlusions within the mesh. As shown in Figure 4, we found that
intra-image occlusion testing (a) worked better than either testing
for inter-image occlusions (c) or turning off the depth test altogether
(b).

To implement this, we could clear the depth buffer between pro-
cessing each light field image, but this would be expensive. Instead
we scale the depth values in the shader program such that the depth
output by the mesh from each light field image fill non-overlapping
depth ranges with the images drawn first using larger depth values.
Thus meshes from images drawn later are never occluded by the
previously drawn meshes.

4.3 Comparison to Camera-Mesh Based Blending
Figure 5 compares our approach to a more classic method of light
field rendering. Figure 5(b) shows the approach used by most previ-
ous real-time light field rendering algorithms [Buehler et al. 2001;
Davis et al. 2012; Gortler et al. 1996; Levoy and Hanrahan 1996].
Instead of disks, they use a triangular mesh to define the reconstruc-
tion basis, where the mesh vertices are at the center of projection of
the light field images, and the triangles designate triplets of images
that get blended together via barycentric interpolation.

Disks as
GPU Shader Parameters

Triangle Meshes as
GPU Vertex Stream

Simple Geometry as
GPU Shader Parameters

Camera Mesh as
GPU Vertex Stream

(a)

(b)

Fig. 5. Our disks compared to the traditional camera mesh blending field.
The red and blue dots are the centers of projection of the light field images.
The red dots are the images used to compute the given ray query. The dashed
lines are the rays used by each of the cameras to answer the ray query. (a)
Our novel disk-based blending field encodes the disks compactly in shader
parameters, freeing the triangle stream to express the scene geometry proxy.
(b) The traditional approach uses the triangle stream to convey the camera
mesh blending field and shader parameters to define the geometry proxy.

In this classical approach, the triangles of the camera mesh are
sent to the GPU via the triangle vertex stream. This means that any
scene geometry proxy must be communicated to the GPU shaders
by some other means, usually as light-weight shader parameters.
Relative to our approach, this restricts the possible complexity ex-
pressed by the geometry proxy. Often a single plane is used [Levoy
and Hanrahan 1996], or the geometry proxy is evaluated only at the
vertices of the camera mesh [Buehler et al. 2001; Gortler et al. 1996].
Alternatively, one can render a single depthmap from a global geom-
etry proxy in a separate pass and use it as a texture in a secondary
pass that renders the camera mesh [Davis et al. 2012]. We tried to
find a way to render a per-view geometry with the camera mesh
blending field, but our solutions all required too many passes to be
real-time.
Our disk-based algorithm in Figure 5(a) transposes the use of

the GPU triangle vertex stream and shader parameters: the triangle
stream carries the scene geometry proxy and the disk geometry is
passed in shader parameters. Intuitively, this makes rendering the
geometry proxy more of a natural fit to the standard GPU pipeline.
Thus we are able to efficiently render with a per-view geometry
using the algorithm described in Subection 4.2, which provides
higher reconstruction quality than using a single global geometry.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:7

(0,0)

(u , v)max max

(u , v)min min

Fig. 6. We use asymmetric ovals for our disks. Their shape is defined by the
placement of the origin and an axis-aligned bounding box.

Moreover, rendering using the camera mesh blending field makes
it harder to implement the tile streaming and caching approach
described in Subsection 4.2.1. Since it is not known until the frag-
ment shader exactly which tiles to sample for each fragment, it is
necessary to employ complicated shader logic that includes multiple
dependant texture fetches which is expensive on current GPUs. In
our algorithm, each triangle rasterized by the GPU maps to exactly
one tile, so we can pass the tile’s cache location directly with the
vertex data.

4.4 Disk Shape
Our disks must be positioned and shaped such that they provide
enough overlap for high quality reconstruction, while remaining
compact enough to afford fast render performance. We use ovals for
our disks (see Figure 6), though rectangles could also be used. Both
shapes are asymmetric, and are defined by an origin point and a 2D
axis-aligned bounding box. The asymmetry allows for smaller disks
and thus faster performance while maintaining sufficient overlap
with neighbors. The asymmetric oval is the union of 4 elliptic sec-
tions, one for each quadrant around the origin. The origin of each
disk is at the center of projection of its corresponding light field
image, the disk normal is aligned to the image’s optical axis, and
the u,v-dimensions are aligned with the s, t image dimensions.
To create an optimal light field reconstruction filter [Levoy and

Hanrahan 1996], the extents of each disk should reach the centers
of the disks in its 1-ring according to a Delaunay triangluation of
the disk centers. We search for the furthest of the 1-ring neighbors
in each of the +u, −u, +v , and −v directions and use that to define
the disk extents. Disk size may be further tuned to trade between
reconstruction quality and render speed.

4.5 Mesh Generation
As described above, we render a separate textured mesh for each
light field image. These meshes are pre-generated as part of our
fully automated processing pipeline.

We first compute a depth map for each light field image using an
approach based on Barron et al. [2015]. Next the depth maps are
tessellated with 2 triangles per pixel, and then the mesh is simplified
to a reasonable size. For mesh simplification, we use a modified
version of the Lindstrom-Turk [Lindstrom and Turk 1998, 1999] im-
plementation in CGAL [Cacciola 2018]. As noted in Subsection 4.2.1,
we require a completely separate triangle mesh per light field image
tile so that tiles can be streamed to the GPU independently. Our

modifications to CGAL’s Lindstrom-Turk implementation guarantee
that we get a separate mesh for each tile.
We use a tunable parameter, geometry precision (дp), to specify

how aggressively to simplify the meshes. Our algorithm simplifies
the mesh until there are an average of 2 × дp triangles per tile.

Figure 7 shows some results at different дp settings. At the lowest
quality, дp = 1, the meshes simplify down to 2 triangles per tile,
and the reconstructed results show some visible ghosting artifacts.
At дp = 5 there are an average of 10 triangles per tile, and the
results are sharp. Increasing дp above 5 does not noticeably improve
reconstruction results, so we set дp = 5 by default, and all results in
this paper use дp = 5 unless explicitly stated otherwise.

When we store the meshes with the light field imagery, we quan-
tize the (s, t ,depth) vertex coordinates to 8 bits per component and
then use a variable length encoding. Beyond that, we don’t do any
extra compression on the geometry data because it is still relatively
small compared to the compressed light field image data. The vari-
able length encoding is decoded at load time, and the quantized
vertex coordinates are streamed directly to the GPU, where they are
expanded and projected to the screen in the shader program.

5 PREFILTERING TO IMPROVE LIGHT FIELD
RECONSTRUCTION

Our disk-based light field reconstruction algorithm (Section 4) works
well when the scene geometry is accurate, but can produce artifacts
around depth edges where the geometry proxy deviates from the
shape of the underlying scene. And these artifacts can flicker from
frame to frame as the user moves around.

We can significantly diminish these artifacts by applying a novel
form of prefiltering to the light field imagery during processing.
The concept of light field prefiltering was introduced by Levoy and
Hanrahan [1996] as a way of smoothing away frequencies that are
not captured by a relatively sparse camera array. To perform optical
prefiltering during the acquisition process, one would need a very
large camera aperture spanning the space between neighboring
camera positions, which is difficult to achieve with very wide-angle
lenses. However, we can apply synthetic prefiltering to our imagery
by modeling a large synthetic aperture camera.
We prefilter our light field imagery by applying a synthetic pre-

filter after the light field is acquired but before it is encoded for
rendering. To do so, we treat the original light field as a synthetic
scene and acquire a new light field from it using cameras with aper-
tures large enough to band-limit the 4D light field signal. Since
this is done offline, we can use a higher quality representation of
the light field as the original light field representation and use the
prefilter to project this higher quality light field onto our real-time
light field model.

Of course, since this prefilter is applied after acquisition, we can’t
remove all aliased frequencies from the data. However, by projecting
from a higher quality offline model of the light field, we can remove
spurious frequencies introduced by our simplified real-time model.
We have also found that prefiltering helps reduce the impact of other
distracting artifacts as well.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:8 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

Geometry gp=10Light Field Image Geometry gp=1Geometry gp=5 Novel View gp=1 Novel View gp=5Depthmap

Geometry gp=10Light Field Image Geometry gp=1Geometry gp=5 Novel View gp=1 Novel View gp=5Depthmap

Fig. 7. The impact of geometry precision (дp) on reconstruction quality. Shown from left to right is, a single image from the light field, the depthmap generated
for that image, the simplified mesh generated from the depthmap at дp = 10, дp = 5, and дp = 1, and the results of reconstructing a novel view at дp = 1 and
дp = 5. At дp = 1, some ghosting is visible. At дp = 5, the results are sharp. The reconstruction results for дp = 5 and дp = 10 are indistinguishable, so we
leave out дp = 10 results here.

5.1 Prefilter Implemention
To implement the prefilter, we loop over all of the light field image
pixels and compute a Monte Carlo approximation of the 4D integral
over the 2D surface of the pixel and the 2D synthetic aperture for
the camera (see Figure 8). For the synthetic aperture, we simply use
the disks from our disk-based reconstruction of Section 4 as these
are already sized and shaped appropriately.
The integral we aim to approximate to compute the prefiltered

value at each light field image pixel, I ′i (s
′, t ′), is given by:

I ′i (s
′, t ′) =

∬
Di

∬
Pi,s′,t ′

ρi (u,v)σ (s, t) L̄(o, e)ds dt du dv , (4)

where ρi (u,v) is the disk shaped kernel as defined in Section 4.1.
L̄(o, e) is the light field ray query using a high quality offline light
field reconstruction model, and σ (s, t) is the pixel reconstruction
basis function. The integrals are taken over the area of the disk, Di ,
and the area of the pixel reconstruction basis function, Pi,s ′,t ′ . The
ray origin o is the 3D point on the disk at (u,v) and the direction
e points toward the point in the image at (s, t). The 3D location of
the point at (s, t) is the projection mapped location of that image
point on the triangle mesh for light field image i .

For the pixel reconstruction basis function, σ (s, t), we found that
the Lanczos-2 kernel helped avoid both ringing and over-blurring.
We found that a simple box filter also works, but adds additional
blur.

The Monte Carlo approximation of Equation 4 using J samples is
given by:

Ĩ ′i (s
′, t ′) =

∑
j< J ρi (uj ,vj)σ (sj , tj) L̄(oj , ej)∑

j< J ρi (uj ,vj)σ (sj , tj)
, (5)

where the (uj ,vj) and (sj , tj) are random points on the disk and
pixel reconstruction basis function respectively, and the ray (o, e)
passes through the 3D location of these two points.

The offline light field ray query, L̄(o, e), used in Equations 4 and 5
should be implemented using the highest quality light field recon-
struction possible. In our implementation, we use a reconstruction
very similar to the L(o, e) described in Section 4, but we use a higher

(a) (b)

Fig. 8. Our prefilter is a 4D integral between the light field disk (red oval)
and the light field image pixel (red square). (a) When the geometry proxies
are close, the rays converge and the prefilter results are sharp. (b) When the
geometry proxies differ, the rays diverge, and the results are blurred.

density set of light field images and the depthmaps before simpli-
fication (see Subsection 4.5) for the geometry proxy for each light
field image.
Figure 8 shows the rays used to evaluate Equation 5 for one

pixel. In this example, we use a box filter for σ (sj , tj), so all rays
passing through the pixel are computed. When the real-time model
geometry is close to the shape of the offline model as in Figure 8(a),
the color samples returned by L̄(oj , ej) will be in close agreement,
and the result stored to the prefiltered image Ĩ ′i will be sharp. But
when the geometries disagree as in Figure 8(b), the rays spread to
different parts of the light field images, and the results are blurred.

6 LIGHT FIELD COMPRESSION USING VP9
We generally use ∼1,000–1,500 images at 1280×1024 resolution to
represent a panoramic light field that can be rendered at high quality
using the algorithm of Section 4. Without compression, this would
require 4–6 GBs of image data which would be inconveniently slow
to download over a standard 10-20 Mbit/s connection. Fortunately,
the images in a light field exhibit significant coherence which can
be leveraged for compression.
Since our light fields are shot as a sequence of images, one can

imagine compressing them with a standard video compression al-
gorithm. However, typical video compression techniques are prob-
lematic for our tile streaming architecture (Section 4.2.1) due to

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:9

(a) (b)

Fig. 9. Reference structure used for MCP for light fields. The blue boxes
represent light field images organized in a 2D grid. (a) A direct application
of video MCP to light field data. Each row is a video GOP where each image
uses it’s left-hand neighbor as a reference for MCP. (b) Our approach to
MCP for light fields. We choose a sparse set of images to be references for
the entire light field (red boxes). Every other image uses its nearest reference
image for MCP.

their use of motion compensated prediction (MCP) [Mukherjee et al.
2013; Sullivan et al. 2012], where blocks of pixels are predicted from
translated pixel blocks earlier in the sequence. Sadly, this prevents
fast random access to arbitrary image tiles within the light field.

Instead, we adapt MCP to support our light field rendering tech-
nique (Section 6.1), and modify the open-source VP9 [Mukherjee
et al. 2013] codec to support this (Section 6.2).

6.1 Light Field Compression using MCP
Since we’d still like to use MCP to exploit the coherence between
neighboring light field images, we build a reference structure which
determines which images are used to predict which other images.

A simple approach (Figure 9(a)) would be to treat whole groups of
images as a group of pictures (GOP) and encode them as a standard
video stream [Dai et al. 2015]. In Figure 9(a), each row of images is a
GOP where each image uses its left-hand neighbor as a reference for
MCP. This leads to long chains of references, which is problematic
for our rendering algorithm, since we require fast random access to
individual image tiles. For example, to decode a tile from an image
in the right column of Figure 9(a), we would first need to decode
every other image to the left, which is inefficient.
Instead, we choose a sparse number of images to be reference

images for the whole light field as in Figure 9(b). Every other image
uses the nearest reference image as its reference for MCP. This
guarantees that the reference chains have a length of at most one.
In practice, we decode the reference images when loading the light
field from second storage and keep them in memory, allowing us to
decode any tile from any other image immediately.

Figure 9 shows a common situation where the the light field im-
age positions are in a 2D grid, making it straightforward to choose
a subset of the images to be reference images. Since we also wish
to support less regular panoramic light field datasets, we use the
following simple hierarchical clustering algorithm (other such algo-
rithms could also likely work). We first build a bounding volume
hierarchy (BVH) over the 3D light field image locations until the

leaf nodes contain the target number of images per cluster. Then we
choose the center image as the reference, and all the other images
in that leaf node refer to it for MCP. We found that using 25 images
per cluster provides good compression for most light fields, and we
use that for all examples in this work.

6.2 Implementation using VP9
We implemented this compression approach using the open source,
royalty free VP9 video codec [Mukherjee et al. 2013] as implemented
in [WebM 2016]. We made two changes to the VP9 code to adapt it
for light field compression:

(1) allow access to more MCP reference images than the 8 pro-
vided as default, and

(2) provide random access to individual image tiles.

We accomplished (1) by adding a function to redirect the pointer
for one of the internal VP9 reference images to an arbitrary memory
buffer.We call this alternate function to point to any reference image
in memory before encoding an image or decoding a tile. With this
change, we can implement any MCP reference structure we choose,
including the one shown in Figure 9(b).
To implement (2), we add a look up table to quickly find the

location of a tile in the compressed image data. The look up table
must be compact to avoid introducing too much overhead. We use
a two-level look up table where the first level points to the start of
the column for the tile, and the second points to the tile itself. This
table is added to the image header and entropy encoded, adding on
average just 1 byte per tile and contributing negligible overhead to
decoding.

We must finally ensure that that each tile is encoded completely
independent of the others. This required turning off loop filtering
between tiles (although we still use loop filtering to smooth bound-
aries between blocks within each tile) and turning off the probability
adaptation for entropy encoding that depends on neighboring tiles.

7 LIGHT FIELD PROCESSING AND RENDERING
SYSTEM DETAILS

In this section, we tie together the information in the previous
disjoint Sections 4, 5, and 6 to show how it all fits together into a
unified system for acquiring, processing, and rendering light fields.
We’ve already fully described the acquisition stage in Section 3,
but we haven’t yet addressed all of the pieces in processing and
rendering. We fill in the gaps for processing below in Subsection 7.1
and for rendering in Subsection 7.2.

7.1 Processing Details
Our full processing pipeline has 8 stages: calibration→ synthesis →
subsampling → equiangular conversion → geometry generation →

prefilter → color enhancement→ compression. Some of the process-
ing stages are covered in previous sections: geometry generation
in Subsection 4.5, prefiltering in Section 5, and compression in Sec-
tion 6. Here we briefly describe the remaining stages. Note that our
pipeline is a fully automated process, as it is intended to scale to
many light fields.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:10 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

Calibration. The first step of processing is calibration, where we
determine the camera extrinsics and intrinsics used for all of the
light field images. This step must be run on all light fields acquired
by our camera rigs (see Section 3) because camera extrinsics, and
even intrinsics, are different for every light field capture. We use
an implementation of the approach described by Wu [2013] which
we’ve found to be robust as long as we input approximate priors
for the camera extrinsics and accurate priors for the cameras’ focal
lengths. As a final part of the calibration step, we warp all images to
a rectilinear image space, removing any fisheye or other distortions.

Synthesis. Our synthesis step creates new light field images to
fill the top and bottom poles of the capture sphere because those
are blind spots in our camera rigs. The bottom pole is obstructed
by the tripod, and the top is sometimes missing images because, in
order to save time, we don’t always wind up the rig to point straight
up. We, therefore, use offline view synthesis to interpolate from
other images in the light field to cover the poles. In the light fields
shown in this paper, we use the view synthesis algorithm described
in Anderson et al. [2016].

Subsampling. Our light field camera rigs provide overly dense
sampling near the top and bottom of the sphere (see Figure 1(b,d)). To
provide amore regular sampling, we remove some images from these
denser regions. This reduces the size of the light field data, makes
rendering faster, and provides more uniform quality throughout the
light field. We use the densest set of light field images as input into
the prefilter stage, and output to the subsampled set of images so
that we still get benefits from these extra images.

Equiangular conversion. Our equiangular conversion step con-
verts the input rectilinear images into a locally linear approximation
of an equiangular image space. We use an approximation of one
face of an equiangular cube map (EAC) [Brown 2017]. This allows
us to use cameras with a large field of view without needing to pass
inordinately large images to the renderer. In the examples in this
paper, we use 1280×1024 images with 120◦×96◦ field of view for our
DSLR captures and 110◦×88◦ for our GoPro captures which, using
our equiangular approximation, results in a pixel density of ∼10–11
pixels per degree which matches the resolution of the current HTC
Vive and Oculus Rift displays. Using regular rectilinear images, it
would require 2117×1357 to consistently achieve comparable pixel
density.
The equiangular space is a non-linear space which would make

it more difficult to render our per-view geometries if directly rep-
resented in this space. Therefore, we only warp the tile corners to
their equiangular locations and use standard rectilinear mapping
within each tile. We refer to this as a locally linear approximation of
equiangular space, and it gives us almost all of the benefit without
incurring significant rendering cost.

Color enhancement. As the final step before compression, the
color enhancement stage applies a generic color look-up-table (LUT)
to the light field images. This is usually used to convert from the
camera’s vendor specific color space into display-ready sRGB. It can
also be used to feed in hand-made LUTs to artistically enhance the
colors in the scene.

Cloud processing. Cloud computing is vital for processing our light
field data. By processing in the cloud in parallel across the images,
our pipeline generally takes about 3-4 hours to process a single
panoramic light field still. Running in serial on a single workstation
would take over amonth.We have not heavily optimized the pipeline
and believe that with further optimizations the total processing time
could be reduced significantly.

7.2 Rendering Details
The architecture of our renderer is driven by the tile streaming
and caching algorithm described in Subsection 4.2.1. On the CPU,
we perform tile visibility culling, decode visible tiles that aren’t
in the cache, and stream the decoded image tiles to the GPU tile
cache and the visble triangles to the GPU render pipeline. Finally,
the GPU performs our disk-based reconstruction as described in
Subsection 4.2.

Parallel decoding. We run multiple decoder threads on the CPU
that decode tiles in parallel. During normal user head motion, the
number of tiles decoded per render frame is quite small, generally
less than 50 which is comfortably decodable in the 11ms time budget
to maintain 90Hz. Most tiles needed to render a new frame are
already in the cache. However, when loading a new light field, or
under especially vigorous head motion, the number of tiles needed
can jump to the thousands.

Two-level progressive rendering. In order to avoid dropping frames
due to spikes in tiles to decode, we use the disks from our disk-based
representation to perform incremental progressive refinement. We
use a 2-level hierarchy of disks, one coarse and one fine. Each level
is a full and valid light field. The coarse level is small enough such
that all of the light field images in that level can be pre-loaded to
GPU RAM and kept there. During rendering, we loop through all of
the visible fine level disks, decode the textures for those images, and
send the geometry and texture data to the GPU. If there isn’t enough
time in a given frame to decode all of the texture data needed for
some of the fine-level disks, then we also draw the coarse level
disk in that region. Progressive rendering has been used to render
light fields before [Birklbauer et al. 2013; Sloan et al. 1997]. Our
disk-based representation makes for an easy implementation as we
can render any combination of fine and coarse disks, and they blend
naturally in the output. We generally set the maximum budget of
tiles to decode per frame to 128, which is decodable in well under
11ms on most current VR ready CPUs.

Tile cache. Our compression algorithm described in Section 6
outputs tiles in YUV420 format. Since this isn’t natively supported on
all OpenGL platforms, we use two array textures to implement our
tile cache, one single component array texture for the y-component
and another half-resolution two component array texture for the
uv-components. The y and uv values are sampled separately in the
shaders and recombined to output RGB colors.
In order to either use a smaller memory footprint or be able to

store more tiles at the same footprint, our renderer also supports
on-demand transcoding of the light field tiles to the RGTC texture
format, which reduces the tile cache’s GPU memory by 4× with
no visible loss in quality. This does add about 30% performance

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:11

overhead to every tile decode. We generally limit the tile cache size
to 2GB.

Valid view volume fade. Our panoramic light field datasets provide
the full set of rays needed to generate novel views from within a
limited viewing volume. Outside of that viewing volume, the edges
of the light field images become visible which leads to distracting
artifacts. Rather than show this directly to the user, we smoothly
fade out the light field as the user approaches the edge of the viewing
volume.

8 RESULTS
In this section, we evaluate our system in terms of rendering quality,
file sizes, and rendering speed; the technical challenges (3)–(5) that
were introduced in Section 1.

Test Scenes. Table 1 presents acquisition statistics for our test
scenes. All scenes, except for Lab Space, were acquired using the
camera rigs described in Section 3 and have representative rendered
views in Figure 1. We created Lab Space specifically for Figure 10
using a robot arm programmed to move a DSLR camera and take
pictures at points on the sphere. This allowed us to acquire the light
field using an arbitrarily dense sampling of the sphere.

Table 1. Statistics for the test scenes used in this paper.

Living
Room

Gamble
House

Discovery
Exterior

Discovery
Flight
Deck

Cheri &
Gonzalo

St.
Stephens Lab SpaceScenes

of
Images

File Size

Camera
Rig

Capture
Time

Image
Data Size

Geometry
Data Size

16X GoPro2X DSLR 2X DSLR 2X DSLR 1X DSLR1X DSLR
Robo
DSLR

30 sec.

916

163 MB

23 MB

140 MB

1,330

145 MB

35 MB

110 MB

1,139

179 MB

29 MB

150 MB

1,290

181 MB

34 MB

147 MB

983

143 MB

26 MB

117 MB

1,030

144 MB

27 MB

116 MB

466

53 MB

12 MB

41 MB

55 min. 22 min. 34 min. 44 min. 38 min. NA

8.1 RenderQuality
8.1.1 Comparison to Other Real-time Reconstruction Algorithms.

We compare our rendering algorithm to two other real-time light
field rendering algorithms: camera mesh blending field with planar
geometry proxy (CMBF+P) [Levoy and Hanrahan 1996] and camera
mesh blending fieldwith a global geometry proxy (CMBF+GG) [Davis
et al. 2012].

Camera Mesh Blending Field with Planar Proxy (CMBF+P). Fig-
ure 10 compares our technique to CMBF+P as in Section 4.3. Al-
though CMBF+P is not state-of-the-art, it provides a useful point
of comparison. Our method achieves high quality reconstruction
with only 466 light field images. For CMBF+P, the placement of the
plane greatly affects the reconstruction quality. Unfortunately, with

only a single plane and 466 light field images, there is significant
ghosting regardless of placement.

In general, a more accurate geometry proxy means fewer images
required to render the light field without artifacts [Lin and Shum
2004]. In order for CMBF+P to approach our reconstruction quality,
we had to create a light field with 29,722 images, ∼64× more than
our method.

Camera Mesh Blending Field with Global Geometry (CMBF+GG).
We also compare to CMBF+GG, which is similar to CMBF+P except
it uses a global geometry model instead of a plane. Our CMBF+GG
renderer is based on the algorithm introduced by Davis et al. [2012].
Our implementation differs in that we focus on inside-out panoramic
light fields instead of outside-in; Davis et al. also provides an inter-
active approach to generate the global geometry.
By far the largest benefit of our per-view geometry approach is

that it is significantly easier to generate per-view depth maps which
are good enough to reconstruct local views than it is to create global
geometry accurate enough to use for all views. We found it difficult
to build a geometric model of the scene using photogrammetry
software (RealityCapture [CapturingReality 2018]) directly from our
outward-looking light field imagery. We therefore performed a more
traditional photogrammetric acquisition of the space by moving
a hand-held DSLR camera with a rectilinear lens throughout the
space. This produced a reasonable model, but required an alignment
process to register it to our light field.

Figure 11 compares the results using our method and CMBF+GG.
CMBF+GG is a significant improvement over CMBF+P. However,
our CMBF+GG implementation struggles near edges because it is
hard to create a model that aligns closely to the edges for all views.
In order for CMBF+GG to achieve high reconstruction quality, it
would require near perfect calibration, geometry generation, and
registration which is difficult to achieve in practice. Our approach
is more tolerant of errors in calibration and geometry generation as
can be seen with the depth image comparison in Figure 11.
Reflective and other non-diffuse surfaces are also difficult for

CMBF+GG because photogrammetry cannot construct a model that
is consistent for all views. The per-view geometries used by our
method only need to be a reasonable approximation for nearby
views and thus can handle reflective surfaces reasonably well.

8.1.2 Prefiltering. Our prefiltering algorithm, described in Sec-
tion 5, mitigates the visible impact of light field rendering artifacts.
The primary artifact typically seen in light fields is ghosting, which
is particularly distracting in a real-time setting because it appears
to flicker as the user moves. Our prefiltering step replaces many of
these ghosting artifacts with a smooth blur which reduces flickering.
Figure 12 shows close-ups of some regions most impacted by

prefiltering. Prefiltering preserves sharp imagery where the per-
view geometry is accurate to the scene; elsewhere, it smooths away
distracting ghosting artifacts.
The visual effect of prefiltering can appear subtle when viewed

in still images, especially when the per-view geometry is accurate
which it tends to be. Therefore, we used a lower quality geometry
for the far right image in Figure 12 to make the difference more clear.
The benefits of prefiltering can also be seen in the accompanying
video.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:12 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

Ours Ours

Ours

CMBF+P 64X
Middle

CMBF+P 64X
Middle

CMBF+P
Middle

CMBF+P
Middle

CMBF+P
Far

CMBF+P
Far

CMBF+P
Near

CMBF+P
Near

Fig. 10. Our renderer compared to camera mesh blending field with planar geometry proxy (CMBF+P). On this scene, our approach achieves sharp, high
quality results with only 466 light field images. With CMBF+P, there are visible ghosting artifacts whether we place the plane to align with Near, Far, or
Middle scene geometry. CMBF+P requires at least 29,722, or ∼64× more, light field images to achieve comparable results (CMBF+P 64×).

Ours

Ours Ours

CMBF+GG
CMBF+GG
Projected Depth CMBF+GG

Ours
Nearby Depth

Ours
Nearby Depth

CMBF+GG
Projected Depth CMBF+P

CMBF+P

Fig. 11. Our renderer compared to using a camera mesh blending field with a global geometry proxy (CMBF+GG) [Davis et al. 2012]. Our approach achieves
high quality results with relatively coarse per-view geometry. Our rendered results are shown along with the simplified geometry from a light field image near
the rendered view. CMBF+GG rendered results are shown along with the global geometry projected onto the rendered view. CMBF+P is shown at the far right,
where the plane is aligned with the middle of the scene.

Without Prefilter

With Prefilter With Prefilter

Without Prefilter

With Prefilter

Without Prefilter *

With Prefilter *

Without Prefilter

Fig. 12. Prefiltering blurs over distracting ghosting artifacts which occur where the geometry proxy is inaccurate. The scenes used are (left to right) Living
Room, St. Stephens, Discovery Exterior, and Gamble House. * We use the lower quality geometry setting of gp=1 for this Gamble House example to make the
prefilter results more visible. We otherwise use gp=5 to maximize quality.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

Ryan Overbeck

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:13

8.2 Size: Compression Evaluation
Here, we evaluate the results of the compression algorithm described
in Section 6. We use PSNR to measure compressed image quality.
Like many image and video codecs, VP9 starts by converting from
RGB to chroma-subsampled YUV420 space. This chroma subsam-
pling is considered visually lossless, and so PSNR is measured in
YUV420 space as follows:

SSEC,s =
∑
W
s , Hs

[C1(m,n) −C2(m,n)]
2,

PSNR = 10 log10

(2552 · 3
2WH

SSEY ,1 + SSEU ,2 + SSEV ,2

)
,

where Y ,U ,andV are the corresponding planes of eachW×H image.
We refer to Figure 13 to analyze the rate-distortion characteristics

of our codec. This plot includes our 6 scenes in Figure 1 as well as the
Bulldozer from the Stanford Light Field Archive [Vaish and Adams
2008]. Considering only our own scenes (we discuss Bulldozer below)
at very high quality (∼45 dB PSNR), most light fields are compressed
by ∼40×–200×. The one exception is the Discovery Flight Deck at
∼29×, which is a particularly difficult scene because it has many
sharp details on the consoles which are close to the camera. At more
moderate quality (38–40 dB PSNR), we achieve compression rates
up to 735×.

Figure 14 shows the effect of MCP, comparing our results against
standard image and video compression, using WebP [WebP 2016]
to compress the images and VP9 to compress the videos. Compar-
ing to image compression shows how much we benefit from MCP,
and comparing to video compression shows how much we lose by
adapting MCP to support random access to tiles. To arrange our
light field images into linear videos, we follow the order in which
they were acquired by each camera.
Our compression performance lies somewhere between image

and video compression. Relative to image compression, both ours
and the video codec increasingly benefit from MCP with lower qual-
ity settings, whereas on our scenes we achieve ∼1.5×–2× better
compression than standard image compression, except for the dif-
ficult Discovery Flight Deck. Compared to video, we see that there
may be more to be gained from a denser reference structure, but for
our scenes not more than ∼2.1×.

Bulldozer is an especially dense planar light field, and accordingly
yields greater compression improvement from MCP. The curve for
Bulldozer in Figure 13 is much steeper: at 45 dB PSNR, we achieve
178× compression, and at 38 dB, it is 1,000×. Moreover, compared
to image compression in Figure 14, the Bulldozer curve grows too
large for the graph range at ∼47 dB and hits 7× at 40 dB. Even then,
the curve for video compression shows that our sparse MCP scheme
could benefit from a denser reference strategy.

The Bulldozer results also illuminate some competition between
our rendering and compression algorithms. As noted above, our
disk-based reconstruction with per-view geometry allows us to
render high quality light fields with more sparsely spaced images
than Bulldozer. This itself is a valuable form of compression, but it
reduces the coherence that is available to our compression algorithm
and MCP in general.

8.3 Speed
We study the speed of our light field renderer using Table 2. To
collect these statistics we ran a 30 second scripted session that
mimics a very active user with a wide variety of head motion. We
ran the sessions on a 2017 Razer Blade VR laptop with an Oculus
Rift HMD. This system has an Intel Core i7-7700HQ CPU running at
2.8 GHz with 16 GB system RAM and an NVIDIA GeForce GTX 1060
GPU with 6GB RAM. The Oculus Rift renders to two 1080×1200
OLEDs, one per eye, for a total of 2160×1200 pixels.
As seen in Table 2, average render times fit comfortably within

the 11 ms per frame budget to maintain 90 Hz. This table shows the
time spent in each of the multiple phases of our rendering algorithm.
Overall performance is most directly tied to the number of Visible
Tiles per frame. On scenes where the geometry is relatively close
to the viewer, such as Cheri & Gonzalo and Discovery Flight Deck,
more tiles are rendered which leads to increased CPU Visibility Time.
CPU Visibility Time includes all time culling tiles and aggregating

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

������

35 40 45 50

0.01

0.02

0.03

0.04

0.05
Discovery Flight Deck
Cheri and Gonzalo
St Stephens
Gamble House
Discovery Exterior
Living Room
Bulldozer

Quality (PSNR dB)

S
iz

e
(F

ra
ct

io
n

of
 U

nc
om

pr
es

se
d)

Fig. 13. Rate-distortion plot of our compression approach on our test scenes.
We measure size as a fraction of the uncompressed dataset size, which is 24
bits per pixel RGB.

�����

35 40 45 50

0.0

0.5

1.5

2.0

2.5
Discovery Flight Deck
Cheri and Gonzalo
St Stephens
Gamble House
Discovery Exterior
Living Room
Bulldozer

Video

Image

Ours
Quality(PSNR dB)

S
iz

e
(F

ra
ct

io
n

of
 O

ur
s)

Fig. 14. Our compression vs. standard image (solid lines) and video com-
pression (dashed lines). File sizes are expressed as the scale relative to our
file size at the same PSNR. Thus our size is the 1.0 line. Note that the line
for Bulldozer with image compression grows too large for the range at 47
dB and hits 7× at 40 dB PSNR outside of the displayed graph.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

197:14 • Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec

Table 2. Performance statistics for our light field renderer. All values are
averages per frame recorded over a 30 second scripted session.

Living
Room

Gamble
House

Discovery
Exterior

Discovery
Flight
Deck

Cheri &
Gonzalo

St.
StephensScenes

GPU 1st Pass
Time

GPU 2nd Pass
Time

CPU Visibility
Time

Visible
Disks

Visible
Tiles

4.2 ms

0.38 ms

787

0.19 ms

Decoded
Tiles

Load Time

Rendered
Triangles

CPU Tile Decode
Time

5,194

24

71,835

2.8 ms

3.8 ms

0.40 ms

620

0.22 ms

4,948

20

63,485

2.3 ms

4.4 ms

0.40 ms

826

0.19 ms

5,016

23

64,961

2.8 ms

3.6 ms

0.38 ms

617

0.24 ms

8,674

33

107,625

3.3 ms

3.8 ms

0.40 ms

715

0.24 ms

10,028

30

125,306

3.8 ms

3.8 ms

0.42 ms

641

0.18 ms

5,570

23

67,353

2.4 ms

the visible tiles’ triangle meshes (see Subsection 4.2.1). Only 20–33
tiles are decoded per frame on average, even though ∼5,000–10,000
are rendered, demonstrating the effectiveness of our tile cache. The
cache is helped by the fact that a person generally can’t move their
head very far in only 11 ms.

8.4 Limitations
Using our system, we are able to acquire, process, and render high
quality light fields, but limitations remain. The most common sug-
gestion from users is that the size of the viewing volume feels
somewhat constraining. To address this, the latest version of our
2xDSLR rig has a 60% longer platform and acquires light field ray
volumes over 1 meter in diameter.

Our light field renderer produces high-quality results, but as can
be seen in Figure 12, some subtle artifacts remain. As predicted
by the analysis in Chai et al.[2000] and Lin and Shum[2004], arti-
facts appear when our geometry doesn’t match the scene, especially
when the scene geometry is close to the camera. The most notice-
able artifacts are around edges at large depth discontinuities. Our
depth-based geometry representation creates a rubber sheet effect
at these boundaries. Our second biggest problem is with surfaces
that aren’t well modeled by a single geometry layer, such as sur-
faces with glossy reflections on textured surfaces. Our geometry
model must choose one layer to model well, while the other layer
will exhibit some degree of ghosting. Our prefiltering step helps
make these artifacts less distracting, replacing one artifact with a
relatively unobjectionable blurring effect. An explicit multi-layer
model as in [Penner and Zhang 2017; Zitnick et al. 2004] could
improve rendering quality at edges, though there would be some
performance cost to rendering multiple layers per image. We could
also collect denser light fields and rely less on geometry and view
interpolation, but this would lead to increased burden on both the
camera rig and the compression algorithm.

Our system is intended to scale to all scene types regardless of
complexity. However, our moving light field camera rig limits us to
static scenes. We are able to capture people as long as they remain
still for 20 seconds, but movement such as trees swaying in wind
produce noticeable ghosting artifacts.
There is a lot of room for optimization in our offline processing

pipeline. We achieve reasonable run times (3–4 hours) by relying
on massive parallelization using Google’s extensive cloud resources,
but the run time would be prohibitive for those who don’t have
access to such resources.

9 CONCLUSION AND FUTURE WORK
We have described a complete system for acquiring, processing, and
rendering light field panoramic stills for VR. Our novel camera hard-
ware is versatile, capable of acquiring high quality light fields under
a variety of conditions. It is also portable and time-efficient. Our
novel light field reconstruction algorithm generates higher quality
views with fewer images than previous real-time approaches, and
we further improve reconstruction quality using a novel applica-
tion of light field prefiltering. Our new light field codec compresses
high quality light field stills down to reasonable sizes, and our ren-
derer decodes the images on-demand and reconstructs stereo views
consistently at 90 Hz on commodity hardware, a requirement for
comfortable VR.
Taken together, we have an end-to-end solution for distributing

light field experiences to end users. We have launched this system
to the public as Welcome to Light Fields, a freely downloadable
application on the Steam® store (https://store.steampowered.com/).
The application includes our light field renderer and library of light
field panoramic still images, and it has been downloaded over 15,000
times.
Looking beyond light field stills, the most obvious direction to

take our work is into light field video. Building a practical light field
video camera rig remains a challenge. Such a rig could require as
many as a hundred cameras, which is difficult to achieve if we also
require it to be portable and easy to use.
Compression is also clearly more challenging for video. We be-

lieve our light field stills codec provides a useful foundation on
which to build toward video. Our biggest challenge is decoding the
light field video frames fast enough to maintain 90 Hz rendering
speed. This might be easiest to achieve through a hardware imple-
mentation of the decoder, and reducing the number of tiles required
to render a given frame.

ACKNOWLEDGMENTS
This paper and the system it describes are the product of a multi-
year effort with support from many people at Google. In particular,
we’d like to thank Jason Dourgarian for help generating figures for
the paper; Matthew DuVall for creating the video; Jiening Zhan, Har-
rison McKenzie Chapter, Manfred Ernst, Stuart Abercrombie, Kay
Zhu, Sai Deng, Pavel Krajcevski, Yun Teng, and Graham Fyffe for
contributions to the light field processing and rendering software;
Xueming Yu and Jay Busch for building the light field camera rig
hardware; the WebM team, especially Yunqing Wang, Jim Bankoski,

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

A System for Acquiring, Processing, and Rendering Panoramic Light Field Stills for Virtual Reality • 197:15

Yaowu Xu, Adrian Grange, and Debargha Mukherjee, for help de-
signing and implementing light field compression; Katherine Knox
for project management; Marc Levoy, Janne Kontkanen, Florian
Kainz, John Flynn, Jon Barron, Eric Penner, Steve Seitz, and Hugues
Hoppe for helpful conversations, guidance, and feedback; Clay Ba-
vor for his consistent support and vision for the project; and Greg
Downing who managed the acquisition for most of the light fields
used in this paper.

REFERENCES
Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,

Carlos Hernández, Sameer Agarwal, and Steven M. Seitz. 2016. Jump: Virtual Reality
Video. ACM Trans. Graph. 35, 6 (Nov. 2016), 198:1–198:13.

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. 2015. Fast
Bilateral-Space Stereo for Synthetic Defocus. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Clemens Birklbauer and Oliver Bimber. 2014. Panorama light-field imaging. Computer
Graphics Forum 33, 2 (2014), 43–52.

Clemens Birklbauer and Oliver Bimber. 2015. Active guidance for light-field photogra-
phy on smartphones. Computers & Graphics 53 (2015), 127–135.

Clemens Birklbauer, Simon Opelt, and Oliver Bimber. 2013. Rendering gigaray light
fields. Computer Graphics Forum 32, 2pt4 (2013), 469–478.

Chip Brown. 2017. Bringing pixels front and center in VR video. (March 2017). https:
//blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured lumigraph rendering. In Proceedings of SIGGRAPH 2001. 425–432.

Fernando Cacciola. 2018. Triangulated Surface Mesh Simplification. In CGAL User
and Reference Manual (4.12 ed.). CGAL Editorial Board. https://doc.cgal.org/4.12/
Manual/packages.html#PkgSurfaceMeshSimplificationSummary

CapturingReality. 2018. (2018). https://www.capturingreality.com/Product
Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. 2000. Plenoptic

sampling. In Proceedings of SIGGRAPH 2000. 307–318.
Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.

2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Trans. Graph. 32, 3 (July 2013), 30:1–30:12.

Wei-Chao Chen, Jean-Yves Bouguet, Michael H Chu, and Radek Grzeszczuk. 2002. Light
field mapping: efficient representation and hardware rendering of surface light fields.
ACM Trans. Graph. 21, 3 (July 2002), 447–456.

Feng Dai, Jun Zhang, Yike Ma, and Yongdong Zhang. 2015. Lenselet image compres-
sion scheme based on subaperture images streaming. In 2015 IEEE International
Conference on Image Processing (ICIP). 4733–4737.

Abe Davis, Marc Levoy, and Fredo Durand. 2012. Unstructured light fields. Computer
Graphics Forum 31, 2pt1 (2012), 305–314.

Paul Debevec, Greg Downing, Mark Bolas, Hsuen-Yueh Peng, and Jules Urbach. 2015.
Spherical Light Field Environment Capture for Virtual Reality Using a Motorized
Pan/Tilt Head and Offset Camera. In ACM SIGGRAPH 2015 Posters. 30:1–30:1.

Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient view-dependent
image-based rendering with projective texture-mapping. In Rendering Techniques
’98. 105–116.

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson De Aguiar,
Naveed Ahmed, Christian Theobalt, and Anita Sellent. 2008. Floating textures.
Computer Graphics Forum 27, 2 (2008), 409–418.

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The
lumigraph. In Proceedings of SIGGRAPH 1996. 43–54.

Markus Gross and Hanspeter Pfister. 2011. Point-based graphics. Morgan Kaufmann.
Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable

inside-out image-based rendering. ACM Trans. Graph. 35, 6 (Nov. 2016), 231:1–
231:11.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
based view synthesis for light field cameras. ACM Trans. Graph. 35, 6 (Nov. 2016),
193:1–193:10.

Robert Konrad, Donald G Dansereau, Aniq Masood, and Gordon Wetzstein. 2017.
SpinVR: towards live-streaming 3D virtual reality video. ACM Trans. Graph. 36, 6
(Nov. 2017), 209:1–209:12.

Douglas Lanman and David Luebke. 2013. Near-eye light field displays. ACM Trans.
Graph. 32, 6 (Nov. 2013), 220:1–220:10.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of SIGGRAPH
1996. 31–42.

Zhouchen Lin and Heung-Yeung Shum. 2004. A geometric analysis of light field
rendering. International Journal of Computer Vision 58, 2 (Jul 2004), 121–138.

Peter Lindstrom and Greg Turk. 1998. Fast and memory efficient polygonal simplifica-
tion. In Proceedings of Visualization’98. 279–286.

Peter Lindstrom and Greg Turk. 1999. Evaluation of memoryless simplification. IEEE
Transactions on Visualization & Computer Graphics 5, 2 (1999), 98–115.

M. Lukacs. 1986. Predictive coding of multi-viewpoint image sets. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’86), Vol. 11. 521–524.

Marcus Magnor and Bernd Girod. 2000. Data compression for light-field rendering.
IEEE Transactions on Circuits and Systems for Video Technology 10, 3 (2000), 338–343.

Tim Milliron, Chrissy Szczupak, and Orin Green. 2017. Hallelujah: the world’s first
lytro VR experience. In ACM SIGGRAPH 2017 VR Village. 7:1–7:2.

Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingning Han, John Koleszar, Paul
Wilkins, Yaowu Xu, and Ronald Bultje. 2013. The latest open-source video codec
VP9 - An overview and preliminary results. In 2013 Picture Coding Symposium (PCS).
390–393.

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan.
2005. Light field photography with a hand-held plenoptic camera. Computer Science
Technical Report CSTR 2, 11 (2005), 1–11.

Eric Penner and Li Zhang. 2017. Soft 3D Reconstruction for View Synthesis. ACM
Trans. Graph. 36, 6 (Nov. 2017), 235:1–235:11.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered depth
images. In Proceedings of SIGGRAPH 1998. 231–242.

Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and Fredo Durand. 2014. Light
field reconstruction using sparsity in the continuous fourier domain. ACM Trans.
Graph. 34, 1 (Dec. 2014), 12:1–12:13.

Heung-Yeung Shum and Li-Wei He. 1999. Rendering with concentric mosaics. In
Proceedings of SIGGRAPH 1999. 299–306.

Peter-Pike Sloan, Michael F Cohen, and Steven J Gortler. 1997. Time critical lumigraph
rendering. In Proceedings of the 1997 Symposium on Interactive 3D Graphics. 17–ff.

Gary J Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview of
the high efficiency video coding (HEVC) standard. IEEE Transactions on circuits and
systems for video technology 22, 12 (2012), 1649–1668.

Vaibhav Vaish and Andrew Adams. 2008. The (new) stanford light field archive. Com-
puter Graphics Laboratory, Stanford University (2008). http://lightfield.stanford.edu/

Irene Viola, Martin Řeřábek, and Touradj Ebrahimi. 2017. Comparison and evaluation
of light field image coding approaches. IEEE Journal of Selected Topics in Signal
Processing 11, 7 (2017), 1092–1106.

WebM. 2016. (2016). https://www.webmproject.org/code/
WebP. 2016. (2016). https://developers.google.com/speed/webp/
Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H

Salesin, and Werner Stuetzle. 2000. Surface light fields for 3D photography. In
Proceedings of SIGGRAPH 2000. 287–296.

Changchang Wu. 2013. Towards linear-time incremental structure from motion. In
2013 International Conference on 3D Vision. 127–134.

Gaochang Wu, Belen Masia, Adrian Jarabo, Yuchen Zhang, Liangyong Wang, Qionghai
Dai, Tianyou Chai, and Yebin Liu. 2017. Light field image processing: An overview.
IEEE Journal of Selected Topics in Signal Processing 11, 7 (Oct 2017), 926–954.

Cha Zhang and Tsuhan Chen. 2004. A survey on image-based rendering–representation,
sampling and compression. Signal Processing: Image Communication 19, 1 (2004),
1–28.

Cha Zhang and Jin Li. 2000. Compression of lumigraph with multiple reference frame
(MRF) prediction and just-in-time rendering. In Proceedings of Data Compression
Conference 2000. IEEE, 253–262.

C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard
Szeliski. 2004. High-quality video view interpolation using a layered representation.
In ACM Trans. Graph., Vol. 23. 600–608.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. 2001. Surface
splatting. In Proceedings of SIGGRAPH 2001. 371–378.

ACM Trans. Graph., Vol. 37, No. 6, Article 197. Publication date: November 2018.

