INFINITE AREA LIGHT SOURCE
WITH IMPORTANCE SAMPLING

Matt Pharr and Greg Humphreys

(©) 2004 Matt Pharr and Greg Humphreys

Sec. 0.1] Introduction

This document describes the solution to Exercise 15.4 on page 716.

0.1 Introduction

The basic implementation of the Monte Carlo sampling methods in the imple-
mentation of the | nfiniteAreali ght light source uses a cosine-weighted dis-
tribution of directions over the hemisphere when sampling incident illumination
directions at the point being shaded. While this sampling distribution is guaran-
teed to lead to the correct result in the limit (due to having a non-zero probability
of selecting any particular direction), it may lead to high variance in direct lighting
estimates if the environment map used for illumination is much brighter in some
parts than others. Almost all environment maps of realistic scenes have this prop-
erty; Figure 1 shows two examples.

This document shows how to use the environment map to define a probability
density function for importance sampling over the sphere of directions. This ap-
proach is easy to implement and substantially reduces the variance of images ren-
dered using environment map illumination because it does a good job of matching
the distribution of one of the terms in the direct lighting integrand. In conjunc-
tion with Multiple Importance Sampling to weight the samples taken, high quality
images can be generated at relatively low sampling rates.

Figure 2 shows two images of the Audi TT car model illuminated by the morn-
ing skylight environment map from Figure 1. The top image was rendered using
the simple cosine-weighted sampling distribution, while the bottom image was ren-
dered using the improved sampling method implemented here. Both images used
just 32 shadow samples per pixel. For the same number of samples taken and at
negligable computational cost, the new sampling method computes a substantially
better result with much lower variance.

With an environment map with smaller regions of bright focused light like the
St. Peter’s environment map is used for illumination, using importance sampling in
this manner is even more effective. With the cosine sampling method, sometimes
none of the samples will be in the important bright regions and other times many of
them will be. The end result is excessive variance. The killeroo images in Figure 3
compare the two sampling approaches with the St. Peter’s environment map.

In contrast to methods for environment map sampling like those developed
by Kollig and Keller (Kollig and Keller 2003) and Agarwal et al. (Agarwal, Ra-
mamoorthi, Belongie, and Jensen 2003), this approach requires almost no pre-
computation time (as opposed to minutes of preprocessing time). As with those
approaches, there is negligible computational cost at render-time. In our experi-
ence, it gives results with equivalent quality to those from those approaches with
substantially less implementation complexity.

0.2 Implementation

The I nfiniteArealLightlS light source implements the sampling method de-
scribed above. Most of its implementation is the same as I nfi ni t eAr eali ght ;
we will just discuss the differences here.

There are three main steps to the sampling approach implemented here:

Figure 1. A latitude-longitude environment map from a simulation of the early
morning sky (top) and an environment of St. Peter’s Cathedral (bottom). These
images are used for illuminating the TT model in Figure 2 and the Killeroo in
Figure 3. These environment maps cover multiple orders of magnitude in varia-
tion of the radiance function’s value. (Images courtesy Nolan Goodnight and Paul
Debevec, respectively.).

Sec. 0.2] Implementation

Figure 2: TT car model illuminated by the morning skylight environment map, ren-
dered with four image samples per pixel and eight light source samples per image
sample. The top image shows the result from using a uniform sampling distri-
bution, whlie the bottom image shows the improvement from the method imple-
mented here. Note that a total of just 32 light samples per pixel gives an excellent
result with this approach.

Figure 3: Killeroo illuminated by the St. Peter’s cathedral environment map, ren-
dered with four image samples per pixel and sixteen light source samples per image
sample. The top image was rendered using a uniform sampling distribution, giving
a result with very high variance. The bottom image shows the substantial improve-
ment from the method implemented here.

Sec. 0.2] Implementation

Figure 4: 1D example of finding a piecewise-constant function (solid lines) that
approximates a piecewise linear function (dashed lines) for use as a sampling dis-
tribution for importance sampling. Even though some of the sample points that
define the piecewise linear function (solid dots) may be zero-valued, the piecewise-
constant function must not be zero over a finite range. A reasonable approach to
avoid this case, shown here and implemented in the | nfi ni t eAreaLi ght | S inte-
grator, is to find the average value of the function over some range and use that to
define the piecewise-constant function.

¢ Define a piecewise-constant 2D function in image coordinates (u,v), p(u,v)
that is based on the distribution of the radiance function represented by the
environment map.

e Develop a sampling method to transform uniformly distributed 2D random
numbers to samples drawn from the piecewise-constant p(u,v) distribution.

¢ Define a probability density function over directions on the unit sphere based
on the probability density over (u,v).

The combination of these three steps makes it possible to generate samples on
the sphere of directions according to a distribution that matches the radiance func-
tion very closely, leading to substantial variance reduction.

The I nfiniteAreaLight!|S constructor precomputes the piecewise-constant
function and its CDF for sampling. The first step in this process is to transform the
continuously-defined spectral radiance function defined by the environment map’s
texels to a piecewise-constant scalar function by computing its luminance at a set
of sample points using the Spect rum : y() method. There are three things to note
in the code below that does this computation.

First, it computes values of the radiance function at the same number of points
as there are texels in the original image map. It could use either more or fewer
points, leading to a corresponding increase or decrease in memory use while still
generating a valid sampling distribution, however. These values work well, though,
as fewer points would lead to a sampling distribution that didn’t match the function
as well while more would mostly waste memory.

The second thing of note in this code is that the piecewise constant function
values being stored here in i mg are found by slightly blurring the radiance function
with the M PMap: : Lookup() method (rather than just copying the corresponding
texel values). The motivation for this is subtle; Figure 4 illustrates the idea in

1D. Because the continuous radiance function used for rendering is reconstructed
by bilinearly interpolating between texels in the image, just because some texel
is completely black, for example, the radiance function may be non-zero a tiny
distance away from it due to a neighboring texel’s contribution. Because we are
using a piecewise-constant function for sampling rather than a piecewise-linear
one, it must account for this issue in order to ensure greater-than-zero probability
of sampling any point where the radiance function is non-zero. (Alternatively, we
could use a piecewise-linear function for importance sampling and thus match the
radiance function exactly. However, it’s easier to draw samples from a piecewise-
constant function’s distribution and because environment maps generally have a
large number of texel samples, a piecewise-constant function suffices to match its
distribution well.)

Finally, note that the loops over nu and nv and the indexing scheme used for the
i ng array are interchanged versus typical C++ usage (where the outler loop would
be over nv rather than nu and where i ng would be indexed as i mg[u+v*nu] . We
made these slightly unusual choices here so that later code can more closely match
the mathematics of the sampling method’s derivation.

(Compute scalar-valued image from environment map)= used: none
float filter = 1.f / max(wi dth, height);
int nu=wdth, nv = height;
float *img = new float[w dth*height];
for (int u=20; u<nu ++u) {
float up = (float)u / (float)nu;
for (int v=0; v <nv; ++v) {
float vp = (float)v / (float)nv;
i ng[v+u*nv] = radi anceMap->Lookup(up, vp, filter).y();

}

Like the I nfiniteAreaLight, I nfiniteAreaLightl S stores the image using
aM PMap.

(InfiniteAreaLightIS Private Data)= used: none
Spectrum Lbase;
M PMap<Spect run® *radi anceMap;

Sampling from the 2D piecewise-constant function now stored in the i ng array
can be done as a two-step process. Intuitively, first we choose sample along one
column of the image, based on a 1D probability density defined by the integral of
the function along the columns. (Thus, columns with relatively bright environment
map function values are more likely to be selected.) Next, given such a column
we need to sample from the distribution of the function along the column, Each
of these steps is just a 1D sampling problem. Figure 5 shows this idea with a
low-resolution image.

More formally, to understand how to draw a sample from a a 2D distribution
p(u,V), recall from Section 14.5 that for general multidimensional joint probability
distributions, each dimension must be sampled in turn in a manner based on the
sample values chosen for previous dimensions.

For the case here, consider a function f(u,v) defined over R? by a set of nyn,
values fgy where fgg gives the value of f over the range [u,u+ 1) x [v,v+1).

Sec. 0.2] Implementation

Figure 5: Plot of the piecewise-constant sampling distribution for the St. Peter’s
environment map (top) and the marginal density function p,(u) (bottom). First the
1D distribution at the bottom is used to select a u value, giving a column of the
image to sample. Columns with bright pixels are more likely to be sampled. Then,
given a column, a value v is sampled from that column’s 1D distribution.

Recall that the joint distribution of a 2D function is defined as

B f(u,v)
plu,v) = [[f(u,v)dudv’

Thanks to f’s definition, integrals of its value are simple sums of fgy values, so
that

As usual, we will define

If://f(U,V)dUdVZZZfG’\’}.

The marginal density py(u) is easily found as a sum of fgg values
fro
pul) = [plu,v)dv = 248,
f

for W= |u]. Note that g(u) is itself a piecewise constant function with n, values.
These values be easily computed in a preprocessing step, and thus u samples can
be taken from its distribution using the approach for sampling piecewise constant
function described in Section 14.3.4.

Given such a u sample, the conditional density py(v|u) is

f~u \Y
N CRY
Pulvlu) = pu(u) pu(u)’

If the piecewise constant p,(u) function is represented as a set of values gg with
the conventions above, we have

py(v|u) = Ta

itself a piecewise-constant function that can be sampled with the same one-dimensional
approach.

Given this context, the following fragment from the I nfi ni t eAreaLightlS
constructor computes the piecewise constant distribution py(u) as well as the n,
distinct piecewise constant distributions p(v|u). First some working memory is
allocated and the value of sin® for each row of the latitude-longitude image is
computed. The use of these sin 0 values will be explained shortly.

(Initialize sampling PDFs for infinite area light)= used: none
float *func = (float *)alloca(max(nu, nv) * sizeof(float));
float *sinVals = (float *)alloca(nv * sizeof(float));
for (int i =0; i <nv;, ++)
sinval s[i] = sin(MPlI * float(i+.5)/float(nv));
vDistribs = new DistributionlD *[nu];
for (int u=20; u<nu ++u) {
(Compute sampling distribution for column u s)

}

(Compute sampling distribution for columns of image o)

(InfiniteAreaLightlS Private Data)+= used: none
DistributionlD *uDistrib, **vDistribs;

First the p(v|u) distributions are found. The function values are copied from the
luminance image into the temporary f unc buffer and are multiplied by the value of
sin @ corresponding to the 8 value each row has when the latitude-longitude image
is mapped to the sphere. Note that this multiplication has no effect on the sampling
method’s correctness: because its value is always greater than zero, we are just
reshaping the sampling PDF. The motivation for adjusting the PDF is to eliminate
the affect of the distortion from mapping the 2D image to the unit sphere in the
sampling method here. It will be fully explained later.

Note also that this loop linearly steps through the i g array in memory. If i ng
had been initialized previously with the usual indexing scheme—i ng[u+v*nu] -
then this loop would have a stride of nu floats in memory, leading to many more
cache misses. Indeed, this initialization step is nearly an order of magnitude slower
if the usual stepping is used.

(Compute sampling distribution for column u)= used: 8
for (int v =0; v <nv;, ++)
func[v] = img[u*nv+v] * sinVals[v];

vDistribs[u] = new DistributionlD(func, nv);

Di stributionlDisasmall utility class that represents a piecewise-constant 1D
function’s distribution.

Sec. 0.2] Implementation

(Utility Classes and Functions)= used: none
struct DistributionlD {
(Distribution1D Methods o)
(Distribution1D Data o)

b

The Di stributionlD constructor takes the values of a piecewise-constant func-
tion f with n values. It makes its own copy of the function values, computes the
function’s CDF, and stores some auxiliary data, including the integral of the func-
tion, f uncl nt and its reciprocal, i nvFuncl nt .

(Distribution1D Methods)= used: 9
DistributionlD(float *f, int n) {
func = new float[n];
cdf = new float[n+l];
count = n;
mermcpy(func, f, n*sizeof (float));
Conput eSt epldCDF(func, n, & uncint, cdf);
invFuncint = 1.f / funclnt;
invCount = 1.f / count;

}

(Distribution1D Data)= used: 9
float *func, *cdf;
float funclnt, invFunclnt, invCount;
int count;

Given the conditional densities for each column of the image, we an find the 1D
density for sampling a particular column, py(u). The Di stri buti onlD class stores
the integral of its piecewise-constant function in its f uncl nt member variable,
S0 it’s just necessary to copy these values to the func buffer and construct the
Di stributionlD for py(u).

(Compute sampling distribution for columns of image)= used: 8
for (int u=20; u<nu ++u)
func[u] = vDistribs[u]->funclnt;
ubDistrib = new DistributionlD(func, nu);

Given this precomputed data, the task of the sampling method is relatively
straightforward. Given a pair of uniformly distributed random variables (§1,&>)
over [0,1]?, it draws a sample from the function’s distribution using the sampling
algorithm described previously, giving a (u,v) value and the value of the probabil-
ity density function for taking this sample, p(u,v). The (u,v) sample is mapped to

spherical coordinates by
v 21U
(6,9 = (n_va n—u)

and then using the spherical coordinates formula to give the direction w = (x,Y,z).

10

(InfiniteAreaLightlS Definitions)+= used: none
Spectrum InfiniteAreaLight!|S::Sanpl e_L(const Point &p, float ul,

float u2, Vector *wi, float *pdf,
VisibilityTester *visibility) const {

(Find floating-point (u,v) sample coordinates 1o)

(Convert sample point to direction on the unit sphere 10)

(Compute PDF for sampled direction 11)

(Return radiance value for direction 11)

}

As described previously, first a sample is drawn from the p,(u) distribution in
order to find the u coordinate of the sample. Rounding this floating point value
down gives which column to use for sampling the v value.

(Find floating-point (u,v) sample coordinates)= used: 10
float pdfs[2];
float fu = ubi strib->Sample(ul, &pdfs[0]);
int u=Cdanp(Float2lnt(fu), 0, uDistrib->count-1);
float fv = vDistribs[u]->Sanmple(u2, &pdfs[1]);

Di stributionlD’s Sanpl e() method is very similar to Sanpl eSt epld(). The
only differences are that it returns a value over [0, count), not [0, 1), it takes fewer
parameters, since the Di stributionlD class variables store many of the values
needed, and it isi nl i ne, thus making calls to it more efficient.

(Distribution1D Methods)+= used: 9

float Sample(float u, float *pdf) {
/1 Find surrounding cdf segnents
float *ptr = std::lower_bound(cdf, cdf+count+1, u);
int offset = (int) (ptr-cdf-1);
Il Return offset along current cdf segnent
u=(u- cdf[offset]) / (cdf[offset+l] - cdf[offset]);
*pdf = func[offset] * invFunclnt;
return offset + u;

}

Given the (u,v) sample position, it’s easy to first convert this to a (8, @) sample
and thence to a direction on the sphere.

(Convert sample point to direction on the unit sphere)= used: 10
float theta = fv * vDistribs[u]-> nvCount * MPI;
float phi = fu * ubDistrib->nvCount * 2.f * MPI;
float costheta = cos(theta), sintheta = sin(theta);
float sinphi = sin(phi), cosphi = cos(phi);
*Wi = Light Toworld(Vector(sintheta * cosphi, sintheta * sinphi,
costheta));

Recall that the probability density values returned by the light source sampling
routines must be defined in terms of the solid angle measure on the unit sphere.

Sec. 0.2] Implementation

11

Therefore, this routine must now compute the transformation between the sam-
pling density used, which was the image function over (ny,n,) and the correspond-
ing density after the image has been mapped to the unit sphere with the latitude-
longitude mapping. (Recall that the latitude-longitude parameterization of an im-
age (6,9) isx=rsinBcos@, y =rsinBsing, and z=rcosH.)

First, consider the function g that maps from (u,v) to (6, @),

gmw=<ﬂgy)

ny’ Ny

The absolute value of the determinant of the Jacobian |Jg| is 212 /(nyny). Applying
the multidimensional change of variables equation from Section 14.4.1 on page
648, we can find the density in terms of spherical coordinates (8,).

NuNy

P(6,9) = p(u,v) > 5

From the definition of spherical coordinates, it is easy to determine that the ab-
solute value of the Jacobian for the mapping from (r,8,@) to (x,y,z) is r2sin.
Since we are interested in the unit sphere, r = 1, and again applying the multi-
dimensional change of variables equation to find the final relationship between
probability densities in terms of the probability density for the sample from (8, @)
constant function to the direction on the sphere,

Nyny
21T2sin8’

This is the key relationship for applying this technique: it lets us sample from the
piecewise-constant distribution defined by the image map and transform the sample
and its probability density to be in terms of directions on the unit sphere.

Here we can now see why the initialization routines multiplied the values of
the piecewise-constant sampling function by a sin® term. Consider for example a
constant-valued environment map: with the p(u,v) sampling technique, all (6, @)
values are equally likely to be chosen. Due to the mapping to directions on the
sphere, however, this would lead to more directions being sampled near the poles
of the sphere, not a uniform sampling of directions on the sphere, which is the
desired result. The 1/sin® term in the p(w) PDF corrects for this non-uniform
sampling of directions so that correct results are computed in Monte Carlo esti-
mates. Given this state of affairs, however, it’s better to have modified the p(u,v)
sampling distribution so that it’s less likely to select directions near the poles in the
first place.

pe) = PO _)

(Compute PDF for sampled direction)= used: 10
*pdf = (pdfs[0] * pdfs[1]) / (2.f * MPl * MPI * sintheta);

(Return radiance value for direction)= used: 10
visibility->SetRay(p, *w);
return Lbase * radi anceMap->Lookup(fu * uDistrib->i nvCount,
fv * vDistribs[u]-> nvCount);

Computing the PDF given a direction is also pretty straightforward. This method
just needs to convert the direction w to the corresponding (u,Vv) coordinates in the

sampling distribution. Given these, the PDF p(u, V) is easily computed as the prod-
uct of the two 1D PDFs, adjusted for the mapping to the sphere as done previously.

(InfiniteAreaLightlS Definitions)+= used: none
float InfiniteAreaLight!S::Pdf(const Point &,
const Vector &w) const {
Vector wi = WrldToLi ght (w);
float theta = Spherical Theta(wi), phi = Spherical Phi(wi);
int u=Canp(Float2lnt(phi * INV_TWOPI * uDistrib->count),
0, ubDistrib->count-1);
Camp(Float2Int(theta * INV_PI * vDistribs[u]->count),
0, vDistribs[u]->count-1);
(ubDistrib->func[u] * vDistribs[u]->func[v]) /
(ubDistrib->funcint * vDistribs[u]->funcint) *
1.1/ (2.f * MPl * MPI * sin(theta));

int v

return

}

Exercises

0.1 The implementation here still doesn’t use any form of importance sampling
for sampling rays leaving the light source for use by integrators like the
Phot onl nt egr at or that follow paths starting from the light source. Fig-
ure out how to apply this sampling technique to that case as well and render
images showing the improvement from doing so.

0.2 One potential shortcoming of this sampling method is the case of an envi-
ronment map with extremely small extremely bright regions. In that case,
all of the samples taken may end up in the very bright area, with none in
the dimmer areas, leading to a poor stratification of samples. If the bright
part happens to be occluded at a particular point being shaded such that the
dimmer areas of the environment map are the only ones that illuminate the
point, the approach here will not be effective. Construct a scene where this
problem occurs. Is this problem evident with real-world environment maps?
How much does the BSDF sampling done for multiple importance sampling
in the direct lighting calculation ameliorate this problem?

Bibliography

Agarwal, S., R. Ramamoorthi, S. Belongie, and H. W. Jensen (2003, July).
Structured importance sampling of environment maps. ACM Transactions
on Graphics 22(3), 605-612.

Kollig, T. and A. Keller (2003, June). Efficient illumination by high dynamic
range images. In Eurographics Symposium on Rendering: 14th Eurograph-
ics Workshop on Rendering, pp. 45-51.

13

