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Abstract
We present a technique for rendering displacement mapped geometry in a ray-

tracing renderer. Displacement mapping is an important technique for adding de-
tail to surface geometry in rendering systems. It allows complex geometric varia-
tion to be added to simpler geometry, without the cost in geometric complexity of
completely describing the nuances of the geometry at modeling time and with the
advantage that the detail can be added adaptively at rendering time.

The cost of displacementmapping is geometric complexity. Renderers that pro-
vide it must be able to efficiently render scenes that have effectively millions of
geometric primitives. Scan-line renderers process primitives one at a time, so this
complexity doesn’t tax them, but traditional ray-tracing algorithms require random
access to the entire scene database, so any part of the scene geometry may need
to be available at any point during rendering. If the displaced geometry is fully in-
stantiated in memory, it is straightforward to intersect rays with it, but displacement
mapping has not yet been practical in ray-tracers due to the memory cost of holding
this much geometry.

We introduce the use of a geometry cache in order to handle the large amounts
of geometry created bydisplacementmapping. By cachinga subset of the geometry
created and rendering the image in a coherentmanner, we are able to take advantage
of the fact that the rays spawned by traditional ray-tracing algorithms are spatially
coherent. Using our algorithm, we haveefficiently rendered highly complex scenes
while using a limited amount of memory.

1 Introduction

Displacement mapping is a valuable technique for modeling variation in surface geom-
etry for computer graphics[2]. It allows the user to describe surface detail with either
displacement maps (analogous to texture maps, except they define an offset from the
base surface), or displacement shaders, which algorithmically describe the detail being
added to the surface[6]. Displacement mapping is unusual in that it is essentially a mod-
eling operation that is performed at rendering-time; this has a number of advantages,
including easy inclusion of adaptive detail and reduced computation for geometry that
is not visible.

The appearance of rough surfaces (which are frequently created by displacement
mapping) is strongly affected by self-shadowing. However, scan-line algorithms typi-
cally do not include shadows, or if shadows are rendered, approximate techniques such
as shadow maps[20][14] are used. Unfortunately, these techniques break down on ge-
ometry with fine detail. However, ray-tracing algorithms can compute accurate shad-
ows, and are desirable because of their support for complex luminaires, realistic surface
reflection models, and global illumination algorithms.
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The first implementation of displacement mapping was in the REYES render-
ing algorithm[3]. REYES subdivides the original geometry into pixel-sized polygons
whose vertices can then be displaced. Because of the huge amounts of geometry that
this process produces, it is only feasible in rendering systems based on scan-line tech-
niques, since they can easily render the geometry in the scene one primitive at a time
and discard each primitive after processing it. Traditional implementations of the ray-
tracing algorithm need random access to the entire scene database, however, since the
rays that are traced can potentially pass through any part of the scene.

Bump mapping is a technique that perturbs the normal across a smooth surface to
give the appearance of greater detail[1]. It is often used as a substitute for displacement
mapping since it is easy to implement and gives similar effects without creating large
amounts of geometry. However, it suffers from a number of disadvantages: since the
surface of a bump mapped object remains smooth the silhouettes are still smooth, and
the object cannot cast shadows on itself. (Techniques for improving the accuracy of
shadows onto bump mapped surfaces exist[21][11], but they still do not provide the full
flexibility or accuracy of ray-tracing displacement maps.)

In order to implement displacement mapping in a ray-tracing system, it is necessary
to develop techniques for managing large amounts of geometry. Though there are tech-
niques for ray-tracing complex scenes[4], and although work has been done to manage
large databases for walkthroughs[18] and flight simulators, none of this work examined
methods for ray-tracing scenes with more geometry than could fit in memory at once.
(Snyder and Barr rendered scenes with billions of primitives, but this geometric com-
plexity was a result of instancing a few simple models many times[15].)

We have developed an efficient algorithm (both in running time and memory use)
for ray-tracing displacement maps. The input geometry is lazily triangulated and adap-
tively subdivided and displaced, and then stored in a geometry cache. The cache keeps
a fixed number of displaced triangles in memory, and discards geometry that has not
been recently referenced when the cache fills up. We have used this scheme to render
scenes with millions of polygons created by displacement mapping while only having
a small subset of the total geometry in memory at any time. One of our test scenes con-
tains over a million unique displaced primitives, and was rendered quickly using only
22MB of memory.

In the remainder of this paper, we will discuss previous implementations of dis-
placement mapping and other related work, and discuss desirable qualities in displace-
ment mapping algorithms. We will then describe the algorithm that we have imple-
mented, report on its performance, and discuss some of the trade-offs we made. Finally,
we will summarize our results and suggest directions for future work.

2 Background and Previous Work

Displacement mapping was first introduced by Cook[2], and later described in detail as
part of the REYES algorithm[3]. In REYES, all geometric primitives are subdivided
into grids of pixel-sized micropolygons. The vertices of these micropolygons can be
displaced before the polygons are shaded. Once the micropolygons have been shaded,
they are stochastically sampled and the samples are filtered to generate image pixels.
Since the memory requirements to create and store the micropolygons and samples
for all the objects in an entire scene simultaneously is prohibitive, REYES divides the
screen into rectangular buckets that are rendered individually. For each bucket, all prim-
itives that are possibly visible in that bucket (taking into account the maximum amount
that the primitive could be displaced), are turned into grids, possibly displaced, shaded,
and broken up into micropolygons. The micropolygons are then placed into the buckets
that they overlap, and are stored in memory until their buckets have been processed.



Though displacement mapping is naturally incorporated into the REYES algorithm,
this approach suffers from a number of disadvantages that our algorithm addresses:

� The resolution of the grid of micropolygons used for shading is the same as the
resolution used for displacements. This means, for example, that much higher
grid resolutions are often necessary for acceptable lookingdisplacements than are
necessary for acceptable looking shading, particularly when displacements are
large or abrupt and the shading is smooth.

Our system separates the displacement mapping process from the shading pro-
cess, by virtue of being in a ray-tracing renderer. Geometry is subdivided and
displaced before rays are intersected with it, and the subdivision is adaptive, so
that the displaced surface is accurately represented by the displaced polygons.
Shading occurs at the points where rays intersect the displaced surface. We are
also able to greatly reduce geometric complexity by simplifying the displaced ge-
ometry before rendering it.

� If a displaced object is obscured by a closer object, REYES still performs dis-
placement (and shading) calculations, since no visibility checks are performed
until after the micropolygons have been created and shaded. (However, hierar-
chical visibility techniques can reduce the impact of this problem in scan-line
systems[5].)

This is one of the classic trade-offs between ray-tracers and scan-line renderers.
Since we do not create the displaced triangles until a ray approaches the geometry
being displaced, we defer creation until the geometry is needed. For scenes with
high depth complexity, this greatly reduces processing time since much of the
geometry is not visible.

� If shadow maps or environment maps are to be used for rendering the scene, then
REYES re-renders the scene when creating these maps. All of the calculations
necessary for displacement mapping must be redone for each of these renderings.
In addition, these techniques are prone to aliasing, particularly when used on de-
tailed self-shadowing geometry.

Since we are able to trace rays to compute shadows, reflections, and transmis-
sion, these effects are much more accurately rendered in our system. We make
use of a different form of coherence than REYES: nearby eye rays will generally
intersect surfaces in nearby locations, and the additional rays traced from these
nearby intersections will follow similar paths. Since our algorithm recalculates
geometry only if it is needed again after being discarded from the cache, we can
potentially only calculate the displaced geometry once.

Other work in displacement mapping has focused on techniques for directly in-
tersecting rays with displacement mapped geometry without subdividing it into small
polygons[16][13]. Given a primitive and a precomputed displacement map, these tech-
niques first compute a mapping that flattens out the original primitive. By applying the
inverse of this mapping to a ray, the (now curved) ray can be intersected with the dis-
placement map, which is treated as a heightfield. Though this technique is attractive
since the memory requirements are modest, in practice it has two problems: first, find-
ing the intersection of a curved ray with a heightfield is an expensive operation, typi-
cally requiring iterative calculations to find an intersection. Second, this technique only
handles displacements along the surface normal.

Kajiya has developed a technique for rendering fractal terrains that creates triangles
lazily[8]. This technique is similar to our method for displacement mapping, though it



did not cache the geometry it created and does not try to remove unnecessary geome-
try from the triangle mesh. Musgrave et al. also discuss lazy creation of fractal terrain
data[12], but do not provide details or statistics about this part of their algorithm.

3 Basic Algorithm

Our algorithm has three phases (Figure 1). Starting with an input triangle mesh, we
insert the triangles into a regular grid of voxels1. We use a bound on the maximum
distance any input triangle will be displaced to determine which voxels could receive
geometry from each primitive when it is subdivided and displaced. The grid that holds
this information is called the contributor grid.

The second phase starts when a ray intersects the contributor grid. Starting with the
first voxel that the ray intersects, we subdivide and displace all the input triangles in-
side that voxel, and store the displaced triangles in a second voxel grid (with the same
dimensions and resolution as the contributor grid). This second grid is called the geom-
etry cache. We then perform ray intersection tests with the displaced geometry in the
voxel. The ray continues stepping through the voxels until we find an intersection with
the displaced triangles or it leaves the grid.

The third phase is a recycling phase that allows us to strictly limit the memory used
to store the displaced triangles. If we determine that more than some fixed number of
displaced triangles is in the geometry cache, we discard the least recently used entries.

3.1 Subdivision and Displacement
Our system allows the user to write displacement shaders in a C-like language similar
to the RenderMan shading language[6]. The shader can access information about the
local differential geometry at the point where it is being applied; it can displace this
point anywhere in space.

Given an input triangle, we execute the shader on its three vertices. If the resulting
triangle requires further subdivision (based on the subdivision criteria developed be-
low), we recursively subdivide it by splitting each of its edges in half and computing
positions for the new vertices created by the subdivision, thus creating four new sub-
triangles. Each of these is checked to see if it needs to be subdivided further, etc.

We subdivide based on triangle edge length in world space. The user can set a de-
sired edge length, and all displaced geometry will have triangle edge lengths less than
that length. Given a triangle to possibly subdivide, we check the length of each edge
against the maximum edge length. If all of the edges are shorter than the maximum
edge length, we terminate the recursion and add the triangle to the geometry cache. If
all of the edges are longer, then we split them all and use the displacement shader to
calculate positions for the midpoints of the edges. If only some of the edges need to
be subdivided, we split all of them, but only evaluate the displacement shader for the
midpoints of the edges that wanted to subdivide; for the rest of the midpoints, we just
interpolate between the positions of the vertices at the ends of their edges (Figure 2).
This technique is frequently used in algorithms that subdivide patches into triangles for
rendering. It ensures that if an triangle that shares an edge with a subdivided triangle
does not need to be subdivided itself, then the triangle that was subdivided will meet up
along their shared edge.

It would be preferable to base subdivisionon edge length in image space, rather than
world space, but there are a number of difficulties with this. Not only do realistic lens
systems introduce non-linear projections that make determining an object’s image space

1Our current implementation only operates on triangle meshes; it would be straightforward
to extend our algorithm to operate on curved surfaces as well if the geometry subdivision step
accounted for the true curved geometry.
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Phase 1: The input triangles (left) are added to the contributor grid (middle). The contributor
grid stores a list of input triangles at each voxel, recording which input triangles could contribute
geometry to that voxel after being subdivided and displaced. To create these lists, a bounding
box is computed for each triangle. The bounding box is expandedby the maximum displacement
distance, and the triangle is added to the lists in each voxel that its bounding box overlaps.
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Phase 2: A ray approachesand is stepped through the voxels in the geometry cache (right). When
the ray enters a voxel, we test whether all the displacedtriangles are present in the geometry cache.
To do this, we compare the list of potential input triangles in the corresponding voxel in the con-
tributor grid to the list of input triangles accounted for in the geometry cache. In this example,
we must subdivide and displace triangle 1 for this ray.
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Phase 3: When the geometry cache fills up, the recycling phase begins. The contents of voxels
that have not been referenced recently are discarded (here these voxels are marked with the letter
‘R’.) The reason that the recycled voxels don’t appear to be completely empty is that the triangles
that overlap multiple voxels are individually stored in each of them. Note that after triangle 1
was subdivided and displaced in phase 2, we determined that some voxels in the geometry cache
received no displaced triangles from it, even though those voxels had Triangle 1 in their list of
potential contributors. We remove the triangle from these lists in the contributor grid.

Figure 1: The three phases of the algorithm.

size difficult[10], but we would also like to be able to account for geometry between the
viewer and the displaced object that magnifies or reduces the size of the object. Light
sources introduce another complication: when displaced geometry casts a shadow, the
part of the shadow cast by a single displaced triangle should be approximately the size
of a pixel in the final image. How to do all of this well is still an open research issue.

Before we add the displaced geometry to the cache, we can reduce the amount of
geometry by removing geometric detail that is too subtle to be visible. Given a triangle
that has been subdivided once, we have four triangles defined by six vertices. We test
if these four triangles are nearly coplanar by checking if the vertices at the midpoints



Figure 2: The cracking problem. Two input triangles (left) are subdivided to different levels. If
the vertex along the shared edge is not constrained to lie along the edgeon the lower triangle, then
a crack will result (center). This can be fixed by interpolating its location between the positions
at the ends of the edge (right).

of the edges of the parent triangle are nearly on the edges (within some user-set toler-
ance). If so, we merge the four triangles into one, defined by the three corner vertices.
If only some of the edges are nearly flat, then we move the midpoints of the nearly flat
edges to lie on the edges; this prevents cracking in the mesh from adjacent triangles
that are flat and are simplified. This process starts at the finest level of subdivision from
the displacement step, and continues recursively until a non-flat region is found or all
of the displaced triangles from a single input triangle have been merged into a single
displaced triangle. This technique can save valuable space in the geometry cache. It is
surprisingly effective: in our experience 30% to 90% of the geometry can be merged.

As we add displaced triangles to the geometry cache, we can improve the accuracy
of the contributor grid. Since the voxels in the contributor grid start out by recording
which input triangles could contribute geometry to them, we can remove triangles from
the lists in the voxels that they did not actually contribute geometry to. Should we later
need to recompute the displaced triangles for a voxel (after it has been recycled, for ex-
ample), this reduces the number of input triangles that must be subdividedand displaced
to the ones that actually do contribute geometry.

As a final optimization, we ensure that voxels in the geometry cache that contain
large numbers of triangles do not excessively slow down intersection calculations. We
put another voxel grid inside any voxel that has more than a hundred or so displaced tri-
angles in it. The resolution of this voxel grid varies depending on how many triangles
are in the voxel. This is an important time/memory tradeoff; adding these sub-voxel
grids sped up rendering of our test scenes by a factor of three, with a modest cost in
memory. If we were too aggressive in adding these sub-voxel grids or if they were ex-
cessively high-resolution, total memory use would be unacceptable. This technique is
similar to a technique for accelerating ray-tracing proposed by Jevans[7].

3.2 Cache Management
Good performance from the geometry cache is central to our algorithm. Three factors
can be adjusted to improve cache performance: capacity, access coherence, and replace-
ment strategy. The more the cache can hold, the more likely it will have the geometry
in it that we need; the more coherently we access it, the more likely geometry that was
created for a previous access will still be present; and the better we are at picking voxels
to be replaced that will not be accessed again for a long time (if at all), the less compu-
tation will later be necessary to fill voxels.

By minimizing the amount of memory we use to store each displaced triangle, we
are able to fit a larger cache in a given amount of memory. Each voxel in the geometry
cache holds an array of vertex locations and an array of structures that hold vertex in-
dices used by each triangle in the voxel. The recursive subdivision done to compute the
displaced triangles maintains information about shared vertices, so we can store a com-
pact points-polygons representation of the displaced triangles in the voxel. Also, since



the displaced triangles are pixel-sized, we do not store per-vertex normals for them. In-
stead, we use the triangle normal for shading; this saves both time and storage space.

We have tried to make the geometry cache access patterns as coherent as possible
by carefully choosing the screen sampling pattern. This makes the eye rays spatially
coherent and in practice, the rays spawned from nearby eye rays are also spatially co-
herent. Most ray-tracers render the image one scan-line at a time, rendering pixels se-
quentially in each scan line. This is not a very coherent sampling pattern. To improve
coherence, a Hilbert curve can be used, which processes the pixels in a much more co-
herent manner[19]. Another effective sampling strategy is to divide the screen into rect-
angular buckets and render them sequentially.

Our replacement strategy is to discard the geometry stored in the least recently ac-
cessed voxel when the cache is full. This strategy performs well and is widely used to
manage cache replacement; we have not performed extensive tests to evaluate the ef-
fectiveness of other replacement strategies.

4 Analysis and Results

To evaluate the system, we gathered statistics for two test scenes.

� A displacement mapped sphere and a displacement mapped box, sitting on a ta-
ble in a room (Plate 1). The displacement shader for the sphere uses two sinu-
soidal functions to determine the displacement, and the box is displaced with a
shader that bevels its edges. The geometric simplification step greatly reduced
the amount of geometry used to represent the box and somewhat reduced the ge-
ometry needed for the sphere. Although this is a simple scene, it demonstrates
the calculation of accurate transmission and shadows in a scene with displace-
ment maps.

� The facade of a sandstone building, viewed in late afternoon (Plate 2). Ap-
proximately 90% of the pixels in this scene have geometry that is displacement
mapped; the stonework on the front of the building is done with two displace-
ment shaders, one for the grooved top part, and one for the craggy bottom part.
Additionally, the window pane is displaced and transmissive; the edges of it are
beveled, and the rest of it is slightly bumpy, simulating low-quality glass.

The shadows cast by the stonework are critical to the success of this image. This
is particularly evident in comparison to Plate 3 (where the facade scene is ren-
dered without computing any shadows). Not only are the shadows that the stone
casts on the windowsill important, but the self-shadowing brings out the ridges of
the stone, giving it a depth that is lacking without them. The glass windowpane
created by displacement mapping is also distinctive and was easily included in
the scene since we could trace rays to compute the specular transmission.

So that we could have a baseline with which to compare the execution time and
memory use of our algorithm, we rendered each scene without displacement mapping.
Next, we rendered the scenes with a cache of unlimited size to determine how much
storage would be necessary to store the whole displacement mapped model and to find
a lower bound on running time (Table 1). We will present detailed results for only the
facade scene in this paper; the results for the sphere and box scene were very similar.

Rendering the undisplaced scenes was quick and memory use was low. Displace-
ment mapping caused geometric complexity to increase a thousandfold, running time
to double, and memory use to increase ten times when there was no limit to the amount
of geometry in memory. The fact that running time only doubled points to one of the



Not Displaced Unlimited Cache
Image resolution 480 x 720 480 x 720
Samples per pixel 1 1
Input triangles 1,254 1,254
Displaced triangles 0 1,126,661
Time to render 11m 5s 24m 38s
Memory used 10.9MB 94.9MB
Geometry saved by
simplification n/a 35%

Table 1: Statistics for the building facade. All tests were run on an SGI Onyx with a 250MHz
R4400 processor and enough memory so that paging did not have an impact on running time.

main advantages of ray-tracing: complexity is handled well, since the time to intersect
rays with geometry grows approximately logarithmically with geometric complexity.

Next, we turned to testing the performance of our geometry caching algorithm and
comparing the effects of different screen sampling algorithms. We tried three different
sampling patterns: scan-line, buckets, and Hilbert curve. The scan-line pattern was the
standard top-to-bottom and left-to-right order that most ray-tracers use, the bucket pat-
tern subdivided the screen into 16 by 16 pixel buckets and rendered those top-to-bottom
and left-to-right, and the Hilbert curve sampling pattern generated a Hilbert curve over
the screen and sampled pixels in the order that the curve passed over them.

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

T
im

e 
(m

in
ut

es
)

Cache size (thousands of triangles)

Hilbert
16x16 Buckets

Scanline

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

C
ap

ac
ity

 m
is

se
s 

(p
er

ce
nt

)

Cache size (thousands of triangles)

Hilbert
16x16 Buckets

Scanline

Figure 3: Effect of cache size versus running time for various screen sampling strategies in min-
utes (left), and capacity misses (right).

The cache was effective for all sampling patterns, though the Hilbert curve and the
bucket pattern resulted in significantlybetter performance than scan-line sampling (Fig-
ure 3). In particular, using Hilbert curve sampling and a cache of 200,000 displaced tri-
angles (less than 20% of the total geometric complexity) used only 20 more megabytes
of memory than the undisplaced scene, and took only 60% more time than if we had
used a cache of unlimited size. If the size of the cache was too small (less than 10% of
total geometric complexity), performance decreased rapidly as the cache thrashed.

A standard measure of cache effectiveness is the miss percentage: the percentage
of all cache accesses where the information of interest is not in the cache. Two causes
of cache misses are relevant for our geometry cache: compulsory misses and capacity
misses. Compulsory misses are unavoidable; the first time some piece of information
is needed, it will not be in the cache. We strive to minimize capacity misses, which
occur when some piece of information that was previously discarded from the cache



is later needed again. We gathered data on the percentage of cache accesses that were
capacity misses (Figure 3) and the percentage of all misses that were capacity misses
(Table 2). As one would expect, capacity misses and running time are closely related,
and the percentage of misses due to capacity decreases as cache size increases.

One interesting result is how scan-line sampling leads to a catastrophic drop in per-
formance when the cache is too small, while the more coherent sampling patterns de-
grade more gracefully. We believe that this is a result of our replacement strategy: when
a cache that has a LRU replacement strategy is too small to hold all of the data being
accessed and when the access pattern goes sequentially through the data, cache perfor-
mance is terrible. Another replacement strategy, like randomly picking a cache entry
for replacement, would probably make scan-line sampling degrade more gracefully.

Cache statistics for the facade scene
Geometry cache size 100,000 200,000 400,000 600,000
Cache size as percentage
of total geometric complexity 8.9% 17.7% 35.5% 53.2%
Total memory use 22.3MB 31.0MB 46.9MB 61.7MB
Increase in memory use compared
to undisplaced scene 11.4MB 20.1MB 36.0MB 50.8MB
Cache hit percentage 99.93% 99.97% 99.98% 99.99%
Percentage of total misses
that are capacity misses 87.2% 72.7% 48.6% 22.6%
Running time 1h 4m 36s 40m 16s 33m 8s 27m 26s

Table 2: The effect of cache size on memory use, cache hit percentage, capacity misses, and
running time. (Hilbert sampling was used for these tests.)

5 Conclusion and Future Work

We have presented an algorithm that allows for the efficient rendering of displacement
maps in a ray-tracer. This is the first such algorithm that has been shown to be effective
in realistic, highlycomplex scenes. Previous implementations of displacement mapping
in non ray-tracing systems were not able to trace rays to compute shadows, reflections,
and other effects; as a result, they did not robustly handle self-shadowing geometric de-
tail and were unable to accurately compute specular light transport. By providing for
efficient ray-tracing of displacement maps, our algorithm makes these rendering tech-
niques possible. We store a subset of all of the displaced triangles in a geometry cache
that is lazily filled with displaced triangles as the rays approach the displaced geome-
try; when the cache fills up, old geometry is discarded from it. Pixels are rendered in
a spatially coherent pattern, and because of the spatial coherence among rays spawned
by nearby eye-rays, access patterns to the cache are coherent enough that small caches
suffice to render scenes quickly.

Some rendering algorithms access the scene in a very incoherent manner (traditional
implementations of path tracing[9], for example); our algorithm performs poorly when
these algorithms are used unless the cache is big enough to hold almost all of the geom-
etry created. Similarly, a scene with a hundreds of light sources in the scene would have
poor access patterns. Teller et al.[17] were able to perform radiosity computations on
enormous models in small amounts of memory by reordering the computation so that it
accessed the scene database in a coherent pattern. We expect that by similarly reorder-
ing the order in which the rays other than the eye-rays are traced, cache behavior should
improve further.

In comparison to other rendering techniques, ray-tracing has the best performance



with scenes with huge amounts of geometry, since the time to intersect a ray with a col-
lection of geometry is approximately logarithmic in the amount of geometry. Until now,
the amount of detail in scenes that are ray-traced has been limited by how much geom-
etry can fit into memory; the algorithms presented in this paper have made it possible
to ray-trace scenes with more geometric complexity than can fit into memory at once,
without requiring extensive modifications to the internals of the rendering system. We
have used these techniques to make displacement mapping available in our rendering
system, and have been able to make images with new effects and previously impractical
amounts of geometric complexity in our ray-tracer.
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