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Abstract

Simulating realistic lighting and rendering complex scenes are usu-
ally considered separate problems with incompatible solutions. Ac-
curate lighting calculations are typically performed using ray trac-
ing algorithms, which require that the entire scene database reside
in memory to perform well. Conversely, most systems capable of
rendering complex scenes use scan-conversion algorithms that ac-
cess memory coherently, but are unable to incorporate sophisticated
illumination. We have developed algorithms that use caching and
lazy creation of texture and geometry to manage scene complexity.
To improve cache performance, we increase locality of reference
by dynamically reordering the rendering computation based on the
contents of the cache. We have used these algorithms to compute
images of scenes containing millions of primitives, while storing
ten percent of the scene description in memory. Thus, a machine
of a given memory capacity can render realistic scenes that are an
order of magnitude more complex than was previously possible.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing
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1 Introduction

Rendering systems are challenged by three types of complexity:
geometric, surface, and illumination. Geometric complexity is nec-
essary to model detailed environments; many more primitives than
can fit into memory may be necessary to model a scene accurately.
Surface complexity is a result of programmable shading and many
texture maps. Illumination complexity arises from realistic lighting
models and the interreflection of light. Previous rendering algo-
rithms have not been able to handle all of these types of complexity
simultaneously. Generally, they either perform illumination com-
putations assuming that the entire scene fits in main memory, or
only store part of the scene in memory and simplify the lighting
computation. In order to be able to use algorithms that compute
accurate illumination with such complex scenes, the coherence of
scene data reference patterns must be greatly improved.

Exploiting coherence to increase efficiency is a classic technique
in computer graphics[19]. Increasing the coherence of a computa-
tion can reduce the amount of memory used, the time it requires, or

both. For example, Z-buffer rendering algorithms operate on a sin-
gle primitive at a time, which makes it possible to build rendering
hardware that does not need access to the entire scene. More re-
cently, the Talisman architecture was designed to exploit frame-to-
frame coherence as a means of accelerating rendering and reducing
memory bandwidth requirements[21].

Kajiya has written a whitepaper that proposes an architecture
for Monte Carlo ray tracing systems that is designed to improve
coherence across all levels of the memory hierarchy, from pro-
cessor caches to disk storage[13]. The rendering computation is
decomposed into parts—ray-object intersections, shading calcula-
tions, and calculating spawned rays—that are performed indepen-
dently. The coherence of memory references is increased through
careful management of the interaction of the computation and the
memory that it references, reducing overall running time and facil-
itating parallelism and vectorization. However, no system based on
this architecture has been implemented.

We have independently developed similar algorithms, based on
two main ideas: caching and reordering. We cache a subset of large
geometric and texture databases in main memory for fast access by
the rendering system. Data is added to these caches on demand
when needed for rendering computation. We ensure coherent ac-
cess to the cache by statically reordering scene data, dynamically
placing it in memory, and dynamically reordering ray intersection
calculations. This reordering is critical for good performance with
small caches. These algorithms have made it possible to efficiently
compute images using global illumination algorithms with scenes
containing roughly ten times as many primitives as can fit into
memory. This marks a large increase in the complexity of scenes
that can be rendered effectively using Monte Carlo methods.

In this paper, we describe the algorithms we have developed and
the system we have built that uses them. We first discuss how pre-
vious rendering systems have managed complexity. We then intro-
duce and describe our algorithms in detail and discuss their imple-
mentation. Finally, we present results from applying our algorithms
to a variety of realistic complex scenes and discuss the performance
of the algorithms.

2 Background

Previously developed techniques that address the problems of ren-
dering complex scenes include culling algorithms, lazy evaluation
and caching, and reordering independent parts of a computation
to improve its memory coherence. In this section, we briefly de-
scribe some of this previous work and how our work draws from
and builds upon it.

While most ray tracing systems do not explicity address scene
memory management, several researchers have investigated this is-
sue, particularly in the context of managing scene distribution on
multiprocessors. Jansen and Chalmers have written a survey of past
work in parallel rendering that investigated these issues[11], and
in particular, Green used geometry caching techniques to manage
scene distribution on a multiprocessor[7]. Pharr and Hanrahan later
used geometry caching to manage large amounts of displacement-
mapped geometry in a serial ray tracer[17]. Global illumination cal-
culations were not performed in these geometry caching systems, so
the rays that were traced passed through coherent regions of space
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and the caches performed well. In general, however, Monte Carlo
ray tracing systems that evaluate the trees of rays in depth-first or-
der access scene data too incoherently for caching algorithms to be
effective.

A number of techniques have been presented to increase the co-
herence of rays traveling through a scene. Fr¨ohlich traversed ray
trees iteratively in order to be able to gather rays into coherent bun-
dles. The bundles were stored in the intersection acceleration data
structure and voxels of rays and geometry were processed in order
based on how many rays were contained within. Rays in voxels
were processed as a group so that candidate objects for intersection
tests could be found and so that the overhead of octree traversal
could be reduced. In a manner similar to shaft culling[9], Rein-
hard and Jansen gathered rays with common origins into frustums
that were traced together so that a set of the objects inside the frus-
tum could be found to accelerate ray-object intersection tests[18].
Pharr and Hanrahan reordered eye rays using space-filling curves
over the image plane to improve the coherence of spawned rays
in a depth-first ray tracer, which in turn improved geometry cache
performance[17].

Scanline-based rendering algorithms are able to render images
of scenes that are too complex to fit into memory; the REYES
architecture[4] is representative of these approaches. Sorting,
culling, and lazy evaluation techniques further increase the effi-
ciency of REYES. At startup time, geometric primitives are sorted
into the screen-space buckets that they overlap. When a bucket is
rendered, the primitives overlapping it are subdivided into grids of
pixel-sized micropolygons that are shaded all at once and discarded
as soon as they have been sampled in the image plane. As rendering
progresses, most hidden geometry is culled before being shaded by
an algorithm similar to the hierarchical Z-buffer[8, 1]. This sorting
and culling process allows REYES to store in memory only a small
fraction of the total number of potential micropolygons.

Two major features of REYES are programmable shading[3, 10]
and support for large amounts of texture data. A texture caching
scheme, described by Peachey[16], makes it possible to render
scenes with much more texture than can fit into memory. Textures
are pre-filtered into a set of multiresolution images (used for anti-
aliasing) that are stored on disk in tiles of approximately 32 by 32
texels. A fixed number of texture tiles are cached in memory, and
when the cache fills up, the least recently used tile is discarded.
Since texture is only read into memory when needed, startup time
is low and textures that do not contribute to the image do not affect
performance. Furthermore, since texture is resampled from the pre-
filtered images, each shading calculation makes a small number of
accesses to a local part of the texture, which further improves lo-
cality of reference and, thus, performance. The texture cache in
REYES performs extremely well: Peachey found that less than 1%
of the texture in a scene can typically be kept in memory without
any degradation in performance. Our system uses texture caching
in a similar manner, and extends these ideas to support efficient ge-
ometry caching.

Algorithms that explicitly take advantage of the dense occlusion
present in large architectural models have been used to compute ra-
diosity solutions in scenes that would otherwise be intractable[20,
6]. These algorithms break the computation into nearly independent
sub-problems, based on sets of mutually-interacting objects. Com-
putation is reordered so that only a spatially local part of the data is
processed at a time, and computation is scheduled based on which
parts of the scene are already in memory to minimize the time spent
reading additional data from disk. These algorithms make it possi-
ble to compute radiosity solutions for models that would require
enormous resources using traditional techniques. Our computation
reordering techniques build on the reordering frameworks of these
systems.

3 Overview

In the next two sections, we describe the techniques we have in-
vestigated for managing scene data and for finding and exploiting
coherence in ray tracing based rendering algorithms. Figure 1 illus-
trates how the various parts of our system interact. Disk storage is
used to manage texture, geometry, queued rays and image samples.
First, the camera generates eye rays to form the image, and these
are partitioned into coherent groups. The scheduler selects groups
of rays to trace, based on information about which parts of the scene
are already in memory and the degree to which processing the rays
will advance the computation. Intersection tests are performed with
the chosen rays, which causes geometry to be added to the cache as
needed. As intersections are found, shading calculations are per-
formed, and the texture maps used for shading are managed by the
texture cache. Any new rays that are spawned during shading are
returned to the scheduler to be added to the queues of waiting rays.
Once all of the rays have terminated, the image samples are filtered
and the image is reconstructed.
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Figure 1: Block diagram of our system.

4 Caching Scene Data

Our system uses texture caching and geometry caching to manage
scene complexity. Our texture cache is much like Peachey’s[16],
and texture access is driven by procedural shaders written in a lan-
guage similar to the RenderMan shading language. Our geometry
caching scheme draws upon ideas from the texture cache: a limited
amount of geometry is stored in memory, and lazy loading limits
the amount of data added to the cache to that which is needed for
ray intersection tests. The only information needed by the geome-
try cache at startup time is the spatial bounds of each model in the
scene. Both caches use a least recently used replacement policy.

4.1 Geometry Sources

A distinguishing feature of our ray tracer is that we cache a sin-
gle type of geometric primitive: triangles. This has a number
of advantages. Ray intersection tests can be optimized for a sin-
gle case, and memory management for the geometry cache is eas-
ier, since there is less variation in the amount of space needed to
store different types of primitives. It is also possible to optimize

2



To appear in Proceedings of SIGGRAPH 1997

Figure 2: Trees by a lake

many other parts of the renderer when only one type of primitive is
supported. The REYES algorithm similarly uses a single internal
primitive—micropolygons—to make shading and sampling more
efficient[4]. Unlike REYES, we optimize the system for handling
large databases of triangles; this allows our system to efficiently
handle a wide variety of common sources of geometry, including
scanned data, scientific data, and tessellated patches. A potential
drawback of this single representation is that other types of prim-
itives, such as spheres, require more space to store after they are
tessellated. We have found that the advantages of a single represen-
tation outweigh this disadvantage.

A number of different sources can supply the geometry cache
with triangles:

� Secondary storage.We store triangle meshes on disk pre-
sorted into voxels. All of the geometry in each voxel is stored
contiguously, so that it may be quickly read from disk. The
model’s bounding box is stored in the file header for efficient
access at startup time. Because geometry may be read from
disk many times during rendering, it is stored in a compact
format in order to minimize time spent parsing the file. As
with tiled texture maps, the time to create these files is negli-
gible: a mesh of slightly more than 1 million primitives stored
in a traditional format can be read, parsed, sorted, and written
out in the new format in well under a minute.

� Tessellated patches and subdivision surfaces.In our system,
patches are tessellated into triangles for the geometry cache.
The only information that must be stored in memory until
these triangles are generated is the bounding box of the patch
or group of patches and, possibly, the control points.

� Displacement mapping.Our system supports displacement
mapping. We subdivide input geometry into small triangles,
the vertices of which are perturbed by a displacement shader.
This can result in enormous amounts of geometry to be stored,
since the triangles created must be the size of a pixel if they
are not to be individually visible.

� Procedurally generated geometry.Relatively simple programs
can be used to describe complex objects; the geometry needed
to represent these objects can be stored in the geometry cache.
The program need only be run again to regenerate the geome-
try if it is discarded and later needed again.

4.2 Geometry Cache Properties

Our geometry cache is organized around regular voxel grids termed
geometry grids. Each collection of geometric objects is stored in its
own grid, which tightly encloses it. The volume of the grid’s voxels
(and hence the amount of geometry in each voxel) determines the
granularity of the cache, since the cache fills and discards all of the
geometry in a voxel as a block. We have found that a few thou-
sand triangles per voxel is a good level of granularity for caching.
However, this is too coarse a granularity for ray intersection ac-
celeration, so we insert another voxel grid, theacceleration grid,
inside geometry grid voxels that hold more than a few hundred tri-
angles. This two-level intersection acceleration scheme is similar
to a method described by Jevans and Wyvill[12].

By construction, all geometry in a voxel occupies a contiguous
block of memory independent of geometry in other voxels. In par-
ticular, triangles that span multiple voxels are stored independently
in each of them. Thus, spatial locality in the three-dimensional
space of the scene is tied to spatial locality in memory. If these
two types of spatial locality were not coupled in this way, the cache
would almost always perform poorly, since coherent access in three
dimensional space would not generate coherent access in memory.

Memory management in the geometry cache is more compli-
cated than it is in the texture cache. Whereas all texture tiles are
the same size, each geometry voxel may require a different amount
of space. These differences lead to repeated allocation and freeing
of different-sized blocks of memory, which causes heap fragmen-
tation. Before memory management was addressed in our system,
fragmentation would often cause our renderer’s size to double or
triple after a few hours of execution. After replacing the system li-
brary’s allocation routines with our own (based on segregated stor-
age with bitmapped usage tables and no coalescing[23]), heap frag-
mentation was negligible. More recently, preliminary experiments
suggest that Lea’s allocator[15] also eliminates growth due to frag-
mentation.

The geometry cache could be implemented with virtual memory,
with some loss of direct control of and information about the con-
tents of the cache. Furthermore, the data being cached must still be
organized to ensure coupled spatial locality as described above, and
computation must still be reordered if the cache is to perform well.
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5 Reordering Rendering Computation

These geometry and texture caching algorithms provide a frame-
work for rendering large scenes. However, since cache misses are
orders of magnitude more expensive then cache hits, we must find
a way to minimize misses if overall system performance is to be
acceptable. In order to ensure coherent access of the caches, we
dynamically reorder ray-object intersection tests. Rather than eval-
uating ray trees in a fixed order, such as depth-first or breadth-first,
all rays are placed on ray queues. The system chooses rays from
the queues, simultaneously trying to minimize cache misses and
advance computation toward completion. The degree to which we
can minimize the number of times geometry must be added to the
cache determines how efficiently we make use of the cache, and
how well the system performs in the face of extreme complexity.

In order to perform this reordering, we would like each queued
ray not to depend on the results or state of other queued rays. This
independence implies that we must store with each ray all of the in-
formation needed to compute its contribution to the image; further-
more, the space occupied by this information must be minimized
given the potentially large number of queued rays. Both of these
goals can be achieved by decomposing the computation of outgo-
ing radiance into a simple sum of weighted incoming radiances.
To our knowledge, this decomposition was first used by Cleary et
al.[2] to reduce storage and communication demands in a parallel
ray tracing system.

5.1 Computation Decomposition

We can take advantage of the structure of the rendering
equation[14] to decompose the rendering computation into parts
that can be scheduled independently. When we sample the ren-
dering equation to computing outgoing radiance at a pointx in the
direction!r, the result is:

Lo(x; !r) = Le(x; !r) +
1

N

X

N

fr(x;!i; !r)Li(x; !i) cos �i;

(1)
whereLo is the outgoing radiance,Le is the emitted radiance,fr
is the bidirectional reflectance distribution function (BRDF) atx,
Li is the radiance incoming from direction!i, and�i is the angle
between!i and the surface normal atx. We can make use of the
separability of (1) to decompose the computation in such a way
as to make each queued ray independent from the others, and to
minimize the amount of state stored with each queued ray. Given a
ray r to be traced in direction!i, the weight of its contribution to
the outgoing radiance atx is given by

w(x; !i) =
1

N
fr(x; !i; !r) cos �i: (2)

If r, in turn, intersects a reflective surface at a pointx0, additional
rays will be spawned from this point to determine the total radiance
traveling alongr. The contribution that one of these spawned rays
r0 will make to the outgoing radiance atx is simply the product of
w(x; !i) andw(x0; !0

i).
When an initial camera rayr0 is spawned, we record a unit

weight and its corresponding image plane location. When the inter-
section ofr0 is found and a secondary ray is spawned, we compute
the total weight for the new ray as above, store this weight and the
same image plane location, and repeat the process. The weight as-
sociated with a rayr thus represents the product of the weighted
BRDF values of all the surfaces on the path from a point onr to
the image-plane location. Once a ray intersects an emissive object,
the emitted differential irradiance that it carries is multiplied by the
ray’s weight, and the result can be immediately added to the radi-
ance stored at the ray’s associated image-plane location.

This decomposition does introduce limitations. For example, be-
cause all of the information about the point being shaded is dis-
carded once secondary rays are generated, adaptive sampling (of
area light sources, for example) is not possible. Although more
state could be stored with each ray, including information about
the surface from which it originated, this would increase memory
requirements. Furthermore, the scheduling algorithm’s interest in
deferring rays that will cause cache misses means that this state in-
formation might have to be stored for a great many points (until all
of their spawned rays have been traced.)

For high resolution images with many samples per pixel, the stor-
age needed to hold intermediate results for all of the image samples
can be hundreds of megabytes. The result for each image sample is
found in parts, and results are generated in an unknown order, so we
write results to disk as they are computed rather than storing them
in main memory. When rendering finishes, we make a number of
passes through this file, accumulating sample values and filtering
them into pixel values.

5.2 Ray Grouping

Given this decomposition of the illumination computation into
pieces that can be easily reordered, we must find effective reorder-
ing techniques. A perfect scheduling system would cause each
primitive to be added to the geometry cache only once. However,
this is not generally possible for ray tracing algorithms, since there
is a strict order relationship in ray trees: it is not possible to spawn
secondary rays until we find the intersection positions of the rays
that cause them to be spawned.

One early reordering approach we tried organizes rays with
nearby origins into clusters. When a cluster of rays is traced, its
rays are sorted by direction to increase their coherence, and each
ray is then traced through the scene until an intersection is found.
This technique is good at exploiting coherence in scenes where the
majority of rays are spawned from a few locations, such as the eye
and the light sources. However, it has two drawbacks. First, be-
cause each ray is traced to completion before starting another ray,
this method fails to exploit coherence between rays in a beam as
they move through the scene together. Secondly, this technique fails
to exploit coherence that exists between rays that pass through the
same region of space, but whose origins are not close together.

The approach we currently use is designed to account for the spa-
tial coherence between all rays, including those whose origins are
not close to each other. We divide the scene into another set of vox-
els, thescheduling grid. Associated with each scheduling voxel is a
queue of the rays that are currently inside it and information about
which of the geometry voxels overlap its extent. When a scheduling
voxel is processed, each queued ray in it is tested for intersection
with the geometry inside each overlapping geometry voxel. If an in-
tersection is found, we perform shading calculations and calculate
spawned rays, which are added to the ray queue. Otherwise, the ray
is advanced to the next non-empty voxel it enters and is placed on
that voxel’s ray queue. Figure 4 summarizes the rendering process.

If the subset of the scene geometry that overlaps each schedul-
ing voxel can fit into the geometry cache, the cache will not thrash
while the rays in an individual voxel are being traced. Conversely,
if a scheduling voxel contains too much geometry to fit into mem-
ory at once, the geometry cache will thrash (this is the analogue of
trying to render a scene that cannot fit into memory without compu-
tation reordering). To account for variations in geometric complex-
ity in different regions of the scene, the regular scheduling grid we
use could be replaced with an adaptive spatial data structure, such
as an octree.

To amortize the expense of cache misses over as much ray inter-
section work as possible, we attempt to defer tracing rays in vox-
els where there will be misses. We preferentially process schedul-
ing voxels that have all of their corresponding geometry cached in
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Figure 3: Indoor scene, with dense occlusion, and Cathedral scene.

Generate eye rays and place them in queues
While there are queued rays

Choose a voxel to process
For each ray in voxel

Intersect the ray with the voxel’s geometry
If there is an intersection

Run the surface shader and compute the BRDF
Insert spawned rays into the voxel’s queue
If the surface is emissive

Store radiance contribution to the image
Terminate the ray

Else
Advance the ray to the next voxel queue

Figure 4: Basic reordering algorithm.

memory, and accumulate rays in the queues of voxels that will in-
cur geometry cache misses. This can lead to prohibitively many
rays to store in memory, so we use a simple mechanism to manage
the untraced rays. We store a limited number of rays in memory in
a ray cache; excess rays are written to disk until needed for inter-
section calculations. When we trace the rays in a given voxel, those
in the ray cache are traced first, and then those on disk are read and
processed.

5.3 Voxel Scheduling

Given a set of scheduling voxels with rays in their queues, the
scheduler must choose an order in which to process the voxels. It
could simply loop through all of the voxels, processing the rays that
are waiting in each of them until all rays have terminated. However,
we can reduce cache misses and improve efficiency by more care-
fully choosing when to process each voxel.

We associate a cost value and a benefit value with each voxel.
The cost is computed using a function that estimates how expen-
sive it will be to process the rays in the voxel (for example, the cost
should be high if the voxel encompasses a large amount of geom-
etry, none of which is currently in memory). The benefit function
estimates how much progress toward the completion of the compu-
tation will be made as a result of processing the voxel. For example,
voxels with many rays in their queues have a higher benefit. Fur-
thermore, voxels full of rays with large weights have a greater ben-

efit than voxels full of rays with low weights, since the rays with
large weights are likely to spawn a larger number new rays. The
scheduler uses these values to choose voxels to work on by select-
ing the voxel with the highest ratio of benefit to cost.

Both of these functions are only approximations to the true cost
and benefit of processing the voxel. It is difficult to estimatea priori
how many cache misses will be caused by a group of rays in a
voxel since the geometry caching algorithms add geometry to the
cache lazily. If the rays in a voxel don’t access some geometry, that
geometry is never added to the cache. It is also difficult to estimate
how many new rays will be spawned by a group of rays before they
are actually traced, since the number and weights of the spawned
rays depend on the reflectances and orientations of the surfaces the
rays hit.

In our implementation, the cost of processing a voxel is based
on an estimate of how much of the geometry in a voxel that will be
accessed is already present in memory. If some but not all of the
geometry in a voxel is in memory, we reduce its expected cost by
90% if we have already traced rays inside the voxel and no geom-
etry that overlaps the voxel has been removed from the geometry
cache in the meantime. This reduction keeps voxels with geometry
that cannot be accessed by the rays currently passing through them
from seeming to be more expensive than they actually are. The
benefit is the product of the the number of rays in the voxel and the
sum of their weighted contributions to the final image. Other pos-
sible cost and benefit functions could account for a user interested
in seeing results for one part of an image as soon as possible, or for
minimizing the number of queued rays.

6 Results

We have implemented our caching and reordering algorithms as
part of a ray tracing based rendering system. Like most ray tracers,
our renderer supports several mechanisms for accurately simulat-
ing light transport. However, because it was specifically designed to
manage scene complexity, our system also supports features usually
only found in scanline-based systems, including displacement map-
ping, the ability to render large geometric databases and NURBS,
and programmable shaders that use large numbers of texture maps.

We conducted a number of experiments to determine how our
algorithms performed on complex scenes that would be difficult to
renderer using traditional approaches. Our experiments were per-
formed on a lightly loaded 190 MHz MIPS R10000 processor with
1GB of memory. So that our results would be indicative of perfor-
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mance on machines with less memory (where there wouldn’t be ex-
cess memory that the operating system could use to buffer I/O), we
disabled I/O buffering for our tests. In practice, performance would
be improved if buffering was permitted. Running time was mea-
sured in wall clock time, which ensured that time spent waiting for
I/O was included. Heap fragmentation caused by the large amount
of memory allocation and freeing necessary to manage the geom-
etry cache was accounted for by basing memory use statistics on
the total size of the process. Although our algorithms make use of
disk I/O in a number of ways, all of our tests were performed using
a single disk; using more disks, a RAID system, or asynchronous
prefetching of data would further improve performance.

Each of our test scenes would be considered complex by cur-
rent standards, requiring between 431MB and 1.9GB of memory
to store in their entirety. The scenes cover a variety of common
situations, including an indoor scene that is densely occluded and
an outdoor scene with little occlusion. We use no instantiation of
geometry in these scenes; all objects are distinct and managed indi-
vidually.

� The first test scene is a Cathedral model that was used to
demonstrate algorithms simulating the effects of weathering
due to water flowing over surfaces[5] (Figure 3). The base
Cathedral model itself consists of only 11,000 triangles, but
displacement mapping is used to add a great deal more ge-
ometric detail. There is also a statue modeled using 36,000
polygons and three gargoyle models comprised of roughly
20,000 polygons each. The surface shaders access four or
five different texture maps at each point being shaded, and
the displacement shader accesses one texture map. After dis-
placement mapping, total geometric complexity is 5.1 million
primitives when the image is rendered at a resolution of 576
by 864 pixels. All tests were performed at this resolution, us-
ing four samples per pixel1. A total of 1,495 texture maps that
use 116MB of disk space are used to store the displacement
maps and the results of the flow simulations over the surface
(wetness, the thickness of dirt deposited on it, and so on). The
illumination in this scene is simple, consisting of one shadow-
casting light source and one fill light.

� Next, we modeled a room in a small office building (Fig-
ure 3). The building has two floors, each with four offices;
the floors are connected by a staircase. The floors and ceil-
ings are modeled using procedural displacement shaders, and
each of the rooms is filled with complex models, including
dense meshes from Cyberware scans and plant models from
an organic modeling program. Total geometric complexity is
46.4 million primitives, which would require approximately
1.9GB of memory to store in memory at once. Most of the
light in the main room is due to to sunlight shining through
a window, modeled as a large area light source. The hallway
and nearby offices are further illuminated by light sources in
the ceiling. The reflective column in the hallway causes light
from rooms not directly visible to the camera to strike the im-
age, and forces additional scene geometry to be be brought
into memory. We rendered this scene at a resolution of 672 by
384 pixels.

� Lastly, we constructed an outdoor test scene consisting of
group of trees by a lake (Figure 2). There are four tree mod-
els comprised of 400,000 to 3.3 million triangles. Even the
individual leaves of the trees are modeled explicitly; noth-
ing is instantiated. The terrain and lake were created using
displacement mapping, resulting in a total scene complexity

1The test scenes were rendered at higher resolution with more samples
per pixel for the color plates. Our scheduling and reordering techniques
performed as well when rendering the plates as when used for the test cases.

of over 9.6 million primitives, which would require approxi-
mately 440MB to store in memory in their entirety. Almost
all of the geometry in this scene is visible from the eye. The
only direct lighting in the scene comes from the sun, which is
back-lighting the trees. Most of the illumination is due to in-
direct lighting from the sky and indirect reflections from other
surfaces in the scene. For our tests, we rendered the scene at
677 by 288 pixels.

6.1 Caching and Lazy Evaluation

We first tested the impact of lazy loading of scene data on both
running time and memory use. We started with the Cathedral, a
scene where most of the modeled geometry and texture was visible.
The scene was rendered twice: once with caches of unlimited size
that were filled lazily, and once with all texture and geometric data
read into memory at startup time (Figure 5). As shown in the ta-
ble, both running time and memory use decreased when scene data
is brought into memory lazily. Memory use was reduced by 22%
using lazy loading, indicating that approximately 22% of the scene
data was never accessed. Given that this test scene was chosen as
a case where we would expect little improvement, this was a par-
ticularly encouraging result. To investigate further, we rendered the
office scene to see how well lazy loading of data worked in a scene
exhibiting dense occlusion. For this test, we computed only direct
illumination from the light sources. We were unable to read the
entire database for this scene into memory at startup time, due to
its large size. However, when we lazily read the data into memory
only 18% of the memory that would have been necessary to store
the entire scene was used.

Cathedral Cathedral Indoor
Lazy Lazy

Running Time 163.4 min 156.9 min 35.3 min
Memory Use 431MB 337MB 316MB
% Texture Accessed 100% 49.6% 100%
% Geometry Accessed 100% 81.6% 17.8%

Figure 5: The overhead introduced by lazy loading of data is very
small, and doing so improves performance even for scenes with
little occlusion. For the scene with dense occlusion, lazy evaluation
makes it possible to render a scene that could not fit into memory
otherwise.

Using the Cathedral scene, we investigated how well the geom-
etry cache performs if standard depth-first ray tracing is used in a
scene that spawns a limited number of illumination rays (Figure
6). We rendered the scene using different geometry cache sizes,
and recorded running time and geometry cache hit rates. We found
that when geometry caching was used we could efficiently render
the scene using only 90MB of memory, which is 21% of the space
needed to store the scene in its entirety, or 27% of the space needed
to store all of the data that was ever accessed.

Next, we investigated the performance of the texture cache us-
ing the Cathedral scene. We rendered the scene a number of times,
each with a different cache size, in order to determine how hit rate
and running time were affected. To increase the number of tex-
ture accesses for displacement map lookups, we used a moderately
sized geometry cache for this test, ensuring that some of the dis-
placement mapped geometry would be discarded from the cache
and later recreated. We found that the texture cache performed ex-
tremely well. Even with only 32 tiles in memory, the cache hit rate
was was 99.90%, and running time was 179 minutes, compared to
177 minutes when using a cache of unlimited size. A cache of 32
tiles uses 128kB of memory, which is 0.1% of all of the texture data
in the scene.

6
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Maximum Running Time % of time with
Memory Use unlimited cache

90MB 184.3 min 117%
100MB 177.7 min 113%
300MB 156.9 min 100%

Figure 6: Time to render the Cathedral scene with varying limits on
memory use. Although performance degraded slowly as maximum
memory use was reduced from 300MB to 90MB, performance de-
grades catastrophically when it is smaller than 90MB. The working
set for this scene is between 80 and 90MB–we were unable to com-
plete any runs with maximum memory use of 80MB or below.

6.2 Scheduling and Reordering

We used the lake scene to test the performance of the reordering
algorithms. The scene was rendered with Monte Carlo path tracing
and no limit to the length of each path; instead, rays with low con-
tributions were terminated probabilistically with Russian Roulette.
A ray cache of 100,000 rays was used, representing 6% of the total
number of rays traced. As shown in Figure 7, rendering the lake
scene with global illumination algorithms and a small geometry
cache was feasible only if computation reordering was performed.
If reordering was not used, storing any less than 80% of the scene
in memory caused running time to increase rapidly, as rendering
was dominated by cache misses. Using reordering, we were able to
render the lake scene using a cache of only 10% of the total size of
the scene.
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Figure 7: Running time for rendering the lake scene as the maxi-
mum amount of memory used is varied. When the cache is large
enough to hold the entire scene database, the difference in time
between the reordered and depth-first computation represents the
overhead introduced by reordering. As can be seen, this overhead
is not excessive. When maximum memory use is reduced to a small
percentage of scene complexity, the reordered algorithm’s perfor-
mance allows us to efficiently render the scene using far less mem-
ory.

I/O performance had a greater impact on running time as we
decreased cache sizes, but only significantly affected running time
when the cache was thrashing. When the lake scene was rendered
with all of the geometry stored in memory, the renderer performed
120MB of I/O to read models from disk. CPU utilization was 96%,
indicating that little time was spent waiting for I/O. When we lim-
ited the total rendering memory to 50MB, the renderer performed
938MB of I/O managing models on disk, though CPU utilization
was still 93%. For both of these tests, less than 70MB of I/O for
the ray queues was done. Without computation reordering, much
more I/O is performed: when we rendered the lake scene without
reordering using a 325MB geometry cache, 2.1GB of data was read
from disk to satisfy misses in the thrashing geometry cache.

Finally, we gathered statistics to gain insight into the interplay
between our scheduling algorithm and the geometry cache. Figure
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Figure 8: Histogram of the number of times each voxel of geometry
was added to the geometry cache for the lake scene. When the scene
is rendered without computation reordering with a cache of 325MB
(left), geometry is added to the cache many more times than when
computation is reordered with a cache of the same size (middle).
When the cache size is limited to just 50MB and computation is
reordered (right), cache performance is significantly better than the
325MB cache without reordering.

8 is a histogram of how many times each voxel of geometry was
added to the geometry cache when the lake scene was rendered.
Depth-first ray tracing led to poor performance with a medium-
sized cache, as illustrated by the fact that most voxels were added
to the cache between fifteen and twenty times. However, if com-
putation reordering was used, the number of times each voxel was
added to the cache was greatly reduced. With a very small cache
of 50MB and computation reordering, voxels were inserted into the
cache an average of approximately eight times. This compares well
to the three complete passes through the database that systems such
as REYES would make in rendering the shadow map, water reflec-
tion map, and final image for this scene. Of course, REYES would
be unable to accurately reproduce the reflections in the water, or
other effects due to indirect illumination.

7 Summary and Conclusion

We have presented a set of algorithms that improve locality of data
storage and locality of data reference for rendering algorithms that
use ray tracing. We have implemented these algorithms as part
of a rendering system that supports programmable shading, large
amounts of texture, displacement mapping and global illumination.
These algorithms have enabled us to render scenes with far greater
geometric, surface, and illumination complexity than previously
possible on a machine of given capacity.

Our algorithms decompose the rendering computation into sep-
arate parts that can be worked on in any order, while minimizing
the amount of state that needs to be stored for the rays waiting to
be traced. Our decomposition of rendering computation is based
on forward ray tracing; determining how to incorporate algorithms
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such as bidirectional path tracing[22] is an interesting future chal-
lenge. Other questions to examine include how performance would
be affected by other scheduling algorithms, and whether it is pos-
sible to greatly reduce the number of queued rays without causing
performance to degrade.

Another area of future work is applying these techniques to par-
allel and hardware accelerated ray tracing. Management of shared
texture and geometry caches on distributed shared memory archi-
tectures offers challenges of coordination of cache access and mod-
ification, scheduling rays over groups of processors, and effective
management of the increased I/O demands that multiple processors
would generate. Furthermore, by presenting a framework for ray
tracing without holding the entire scene in memory (as Z-buffering
does for scan-conversion), this works suggests a new approach to
the long-elusive goal of effective hardware accelerated ray tracing.

Improving performance by gathering related data together with
related computation is a powerful technique, as evidenced by its
central position in computer architecture today; we believe that it
will lead to further benefits in other areas of computer graphics.
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